
Beating data bottlenecks in weather and climate
science

Bryan N. Lawrence∗†‡, Julian M. Kunkel‡, Jonathan Churchill§, Neil Massey¶, Philip Kershaw¶, Matt Pritchard¶
∗National Centre for Atmospheric Science, †Department of Meteorology,‡Department of Computer Science

University of Reading, Reading, U.K.
§Scientific Computing Department, ¶Centre for Environmental Data Analysis, RALSpace

STFC Rutherford Appleton Laboratory, Didcot, U.K
Corresponding Author: bryan.lawrence@ncas.ac.uk

Abstract—The data volumes produced by simulation and
observation are large, and growing rapidly. In the case of simula-
tion, plans for future modelling programmes require complicated
orchestration of data, and anticipate large user communities.
“Download and work at home” is no longer practical for many
use-cases. In the case of simulation, these issues are exacerbated
by users who want simulation data at grid point resolution
instead of at the resolution resolved by the mathematics, and/or
who design numerical experiments without knowledge of the
storage costs.

There is no simple solution to these problems: user education,
smarter compression, and better use of tiered storage and smarter
workflows are all necessary – but far from sufficient. In this
paper, we introduce two approaches to addressing (some) of these
data bottlenecks: dedicated data analysis platforms, and smarter
storage software. We provide a brief introduction to the JASMIN
data storage and analysis facility, and some of the storage tools
and approaches being developed by the ESiWACE project. In
doing so, we describe some of our observations of real world data
handling problems at scale, from the generic performance of file
systems to the difficulty of optimising both volume stored and
performance of workflows. We use these examples to motivate
the two-pronged approach of smarter hardware and smarter
software – but recognise that data bottlenecks may yet limit the
aspirations of our science.

Index Terms—HPC, exascale, big data, extreme data, POSIX,
object store, NetCDF

I. INTRODUCTION

Weather and climate science exploit vast amounts of ob-
servational data and generate vast amounts of simulation
data. Data volumes and velocity are increasing rapidly. This
growth in data is driven by computing capacity – both within
instruments and in supercomputing. Major weather centres will
approach an exabyte of data in the near future, years before
they have access to exascale computing, and so we believe the
first exascale challenge for the scientific community is a data
challenge, and the computing challenge [1] will follow! In this
paper, we concentrate on the bottlenecks introduced into the
relevant workflows by the volume and velocity of that data,
and describe some existing and proposed solutions.

II. CONTEXT

The growth in data volumes arises from the inexorable
exploitation of computing in instruments and simulation. In
particular, both the weather and climate communities seek to

develop ever higher resolution models of the earth system,
and run them in ensembles (e.g. see Figure 4 in [2]) Such
extra resolution leads directly to larger volume output, and
handling that in a timely manner brings velocity issues – can
the input/output, storage, and workflow systems deal with the
data in a timely manner?

An immediate question when faced with such issue is
“Do we really need all that data?”. The answer is almost
certainly not, insofar as some of the data being written out
has little meaningful information content — being beyond
the meaningful resolution [3] — yet it is written because
people think it might be useful in the future. Similarly, perhaps
not all ensemble members need to be fully written out,
and both temporal resolution, and opportunities for online
analysis before writing data out should all be considered.
However, in many cases where the eventual analysis is not
yet determined, the full resolution data may be needed since
re-running models may be too expensive, or even impossible.
In any event, reductions in output from “one-off” decisions
will only postpone bottlenecks being introduced by the drive
to higher resolution, they will need to be addressed.
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Fig. 1. Heterogeneity in the workflow platforms and requirements: from tra-
ditional HPC platforms, to dedicated analysis facilities, and data management
and distribution systems, all with different requirements, serving users with a
multitude or roles.

The workflow environment involved is complicated. Tra-
ditional HPC platforms have been augmented by dedicated



Fig. 2. Data Gravity: the JASMIN concept of a data commons is predicated on
providing a large managed archive of data from ground based observations,
satellites, as well as simulations from major modelling campaigns such as
Model Intercomparison Projects (MIPs). That provides an incentive for users
to bring and share their own project data.

data analysis facilities, and complicated systems for data
distribution such as the Earth System Grid Federation [4] are
in use (figure 1). The storage capacity, types, and performance
requirements are very different, and each has a different
class of storage bottleneck to consider. On HPC platforms
the main issue is often performance — reaching sustained
I/O performance from and to disk. On analysis platforms
there is I/O performance and storage to consider, and in data
distribution systems, network [5] and software issues dominate
to the point where most groups rely on dedicated local archives
rather than personal downloading (e.g. see [6], in particular
their figure 2).

III. CUSTOMISED HARDWARE

In the UK academic community, large weather and climate
simulations are primarily carried out on one of two national su-
percomputers: ARCHER (in Edinburgh) or NEXCS (a portion
of the Met Office supercomputer, in Exeter). Neither have large
storage and/or analysis systems, and data output is migrated
to JASMIN, a data analysis supercomputer for environmental
supercomputing (near Didcot, in Oxfordshire). Dedicated high
bandwidth network links are available to supplement backbone
networks for data transfer.

JASMIN has been designed for environmental data analysis.
As of September 2018 it has over 40 PB of storage, and
over 10,000 cores distributed between a batch cluster and
a community cloud. JASMIN implements a data commons
(fig. 2) utilising the managed archive from the Centre for
Environmental Data Analysis (CEDA,https://ceda.ac.uk) to
underpin the services provided by JASMIN (fig. 3).

JASMIN is configured with a high performance storage
environment [7], which is heavily used – data read rates exceed
1 PB/day for multi-day periods (fig. 4). However, despite the
heavy use, there is considerable performance “left-on-the-
floor”, as not all user codes can make effective use of the
input/output performance available.

As of early 2018, the storage was divided into five classes:
home, user scratch, group work space (GWS), and archive;
with most of the space allocated to the archive (5 PB) and
GWSs (>12PB). Users are generally assigned access to one
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Fig. 3. JASMIN provides a range of services which exploit the CEDA
archives and the customised hardware, the most important of which are the
LOTUS batch cluster, the Community Cloud, and the CEDA data services,
which together provide “Platform-as-a-Service”, “Infrastructure-as-a-Service”
and “Software-as-a-Service”.
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Fig. 4. Network traffic from storage into LOTUS showing data movement
over several years. The blue line is the three day sustained average, the orange
line, the monthly mean.

or more GWS, and the GWS allocations are constrained within
consortium allocations controlled by an external board.

During most of the previous years, growth on disk was
almost linear (fig 5, top panel1). However that linear growth
did not represent user demand, which was heavily constrained:
the middle panel of fig 5 shows the archive on disk, and
how it has been constrained by the allocation cap, despite
the higher underlying growth in most of the archive – one
example of which is the Sentinel data, shown in the bottom
panel of figure 5. The group workspaces were also constrained:
Figure 6 shows that much of the user growth was within GWS

1Note that the early 2018 increase was due to data replication associated
with an upcoming upgrade.

https://ceda.ac.uk
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Fig. 5. Three aspects of storage volume growth: the total disk usage by storage
pool (see text); total archive volume on disk, and total of the Sentinel data
held in the archive (on tape and disk). Key points to note are that the overall
linear growth (as opposed to exponential growth) is because of constraints on
the archive and group work spaces sizes on disk (see text).
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Fig. 6. Usage and fill factor on selected Group Work Spaces over 18 months
to October 2017. Lines show change during this period, from beginning to
end (denoted with the icons, which indicate the consortium). The top panel
shows how the number of users has grown with most workspaces, while the
bottom shows how the group work spaces have filled up to their allocations.
In both cases, some GWS have also changed in size over that period.

and that users were constraining themselves to fit within their
GWS allocations.

The split between archive and GWS, and the constraints
which are applied to both, provide key mechanisms used by
JASMIN to turn what would have otherwise been exponential
data growth into relatively manageable linear growth (although
even linear growth will not be affordable on disk if it exceeds
the Kryder rate [8]).

IV. CUSTOMISED SOFTWARE

Some of the solutions to volume and velocity need to be
addressed in both hardware and software.

Where volume and velocity combine, performance becomes
an issue. As already noted, not all existing workflows make
good use of parallel file systems, and may be more suitable for
other storage media. However, even where workflows are well
suited for parallel file systems, the file sytems themselves bring
limitations which arise from the failure of POSIX at scale to
handle high volume concurrent metadata look-ups and very
large numbers of processes attempting to access a handful of
files. Solutions generally involve application level tuning to
local systems, resulting in poor performance portability.
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library and storage volumes.

Migrating to object stores is one possible solution [9], but
only as part of a plan which addresses higher performance at
write time using traditional interfaces. However, object stores
are subject to a declining Kryder rate too, so tape is an integral
part of planning at most sites, including JASMIN, providing
lower performance (and cheaper) storage where the “coldest”
data can still be accessed quickly.

Object stores and tape bring another set of issues in that
there is little available portable software in the weather and
climate community which can easily exploit such storage in
workflows. Data placement and appropriate metadata are key,
but hierarchical namespaces are limiting, users generally do
not have control over data placement, and system controls
are often blind to expected usage and workflow requirements.
While sophisticated solutions for tape usage exist at major
sites (e.g. the ECMWF MARS system [10]), they do not yet
incorporate object stores, or if they can (or will soon), they
do not deliver portable solutions.

The Centre of Excellence in Simulation of Weather and Cli-
mate in Europe (ESiWACE, https://esiwace.eu) is addressing
these issues in a focused attempt to develop portable software.
Currently there are two strands of activity:

1) The Earth System Data Middleware (ESDM), which
provides a library which sits between traditional HDF
and NetCDF interfaces and storage to deliver perfor-
mance portability; and

2) The Semantic Storage Tools which are aimed at pro-
viding suitable portable interfaces to both tape and
object storege and providing users the ability to manage
their own placement on tiered storage, without losing
visibility of their metadata.

A. Earth System Data Middleware

The ESDM targets performance portability by providing
software that can be linked into existing applications, but
take advantage of knowledge of the local storage environment.
Design goals include: (1) Ease of use and deployment; (2) Ex-
ploiting knowledge of data structures and scientific metadata
to provide efficiency, (3) Supporting multiple read-patterns
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Fig. 8. Core architecture of the ESDM. The HDF plugin and external tools
interface to the layout component which is configured with information about
available storage types and their expected performance. Metadata and storage
backends can use whatever is available.

efficiently, and; (4) Reducing the penalties of shared file access
(i.e. deliver “lock-free” writes in parallel applications).

Ease of use is delivered by providing a library which can
be linked into existing applications using HDF or NetCDF
(figure 7 along with configuration which involved site-specific
optimised data layout schema, figure 8). Administration and
user tools will provide import export and monitoring.

Performance is delivered by exploiting knowledge of the
scientific structures to deliver the necessary lock-free writes
by handling data as atomic fragments.

The current status of the ESDM software is that prototypes
have been built on a number of systems, and it has been
demonstrated to perform signficantly better on Lustre file
systems than the native HDF5 writing to Lustre. Details of
that performance, and results on other systems will appear
elsewhere. User management tools are not yet available.

Future plans include exploiting internal ESD backend dae-
mons to rearrange data for multiple different access patterns
requested by “usage hints” delivered at write-time, or via
the user-tools interface. These daemons will also be able
to rearrange data on the fly for export to remote sites (for
example, via Globus).

B. Semantic Storage Tools

The semantic storage tools target direct use of object stores
by user software, as well as user-controlled data management
in a tiered storage environment.

Currently it is not easy to exploit object stores directly
in normal user workflows, most software is predicated on
systems and libraries which expect to be working with POSIX
filesystems. S3NetCDF (fig 9) addresses this for Python
users by providing a drop-in-replacement for NetCDF-python.
NetCDF datasets are fragmented using the Climate Forecast

https://esiwace.eu
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Aggregation conventions [11] resulting in a set of individual
NetCDF files which can be stored as objects or files, along
with a master array describing how they are aggregated. Users
can keep the master array on normal disk, and S3NetCDF
simply opens that file, and reads/writes the fragments into/from
memory from/into storage.

S3NetCDF exists as a functional prototype, but it accesses
fragments in serial, and performance is relatively poor. It is
currently being rewritten to exploit the available parallelism
to delivery what is hoped to be even better performance than
is available using normal POSIX disk access.

Even without direct access to object stores from user codes,
object stores can be treated like tape, and used for stashing
“colder” data for later use. However, where users are managing
this process, the major problem is maintaining information
about what is on such storage. Lists of filenames are inad-
equate, and local bespoke solutions do not allow users to
mange their data across multiple sites. These issues are being
addressed by the development of cache facing software that
(1) manages data migrations, and (2) allow users to manage
their own metadata about what is where.

This software, currently known as CacheFace, depends on
three key internal components: a data migration utility, a cache
management utility, and a metadata system. Development on
each is underway, with the data migration tool reaching a
sufficient level of maturity so as to be deployed on JASMIN
(as the JASMIN Data Migration App) in the final quarter of
calendar year 2018. The other two only have rudimentary
prototypes, but have the same fundamental requirements as
the ESDM and S3NetCDF, so development is expected to be
relatively swift. Exploiting these underlying similarities will
be one of the goals of the ESiWACE2 project beginning in
2019, with long-term maintenance of the tools being picked
up by institutional partners.

V. RELATED WORK

A number of sites are developing hybrid HPC/cloud solu-
tions, and some are at a similar scale in terms of compute,
e.g [12]. However, we believe JASMIN is unique in terms of
the co-location with a managed archive crossing a wide range
of environmental data, although the Polish Innovation Testbed
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Fig. 10. CacheFace will provide a POSIX front end which manages and
migrates data between storage tiers while exposing NetCDF and other
metadata to the user regardless of where the data is stored, whether on tape,
or disk.

hosts a range of earth observation data [13], and a number
of sites are providing computational facilities alongside ESGF
climate data.

The ESDM is built on a middleware heritage that some may
argue began with ADIOS [14], and has many characteristics in
common with sophisticated solutions for buffering data flow
in tiered disk storage (e.g. [15], [16] and managing scientific
workflows [17]. The ESDM differs from these more generic
solutions, by attempting to make use of our domain specific
knowledge about the contents of NetCDF data.

There are broadly two current approaches to exploiting
object stores: attempts to use middleware to unify I/O stacks
(as we are doing with the ESDM) or providing “POSIX-like”
or “POSIX-light” file system interfaces that drop some of the
full POSIX requirements in order to exploit object stores effi-
ciently. Differing examples from the research and commercial
sphere include MarFS [18] and QuoByte2. Our approach is
somewhat different, by again using our domain specific knowl-
edge (specifically, the Climate Forecast conventions [19]) and
the ability to split metadata and data to effectively exploit
object stores. The same domain specific knowledge provides
the key point of difference for our CacheFace development
from other data migration and caching systems (of which there
are too many to reference here).

VI. SUMMARY

Modern weather and climate workflows demand customised
data analysis environments with specialised hardware and user
configurable software environments (virtualisation, container-
isation etc). These requirements are met in the UK by the
JASMIN facility which co-locates a “community cloud” with
a managed archive, a large batch cluster, and a sophisticated
tiered storage system. Over the last few years, most user
workflows have been able to be accommodated on JASMIN
disk, with tape used only for backup and long-term archive,
however, projections of future demand suggest that “disk-only”

2https://www.quobyte.com

https://www.quobyte.com


workflows will need to be supplanted by workflows which
include more tiers of storage, including tape.

Within those workflows more parallelism will be necessary
to avoid unreasonable wall clock times, but such parallelism
will not eventuate without both new algorithms and approaches
by users and the widespread availability of more efficient and
smarter storage middleware and data management software.
The European ESiWACE project is addressing these middle-
ware and data management software requirements by devel-
oping two families of products: high performance middleware
to lie beneath commonly used software libraries like HDF
and NetCDF4 (the “Earth System Data Middleware, ESDM”),
and user deployable portable tools to manage data in a tiered
storage environment.

These two approaches to beating data bottlenecks, smarter
hardware and software, will not be enough on their own.
The reality of storage economics coupled with feasible data
production volumes and velocity mean that despite technology
innovations, the most important approach to these data bottle-
necks will be avoiding the problem in the first place by writing
less data! This means that experimental design and analysis
workflows will need radical rethinking — a process that will
inevitably involve the entire scientific community, not just the
technical experts.
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