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Model development and assessment
philosophy

* No pretty models; rather a modelling system
able to increase our understanding of the
mechanisms that govern the climate system:

— Not so important whether the model looks
good or bad, but that it answers the
guestion of why something happens in the

_Climate system y

— While we develop, we prefer a bad result for the
right reasons to a good result for the wrong
reasons

* As much as it is feasible, only change one thing

at a time, so that we can build a consistent and
traceable chain of understanding

e Bottom line: we do not tune our models each
time that we change resolution




HPC available to UK weather and
climate scientists

Machine ____|Owner __ PetaFlops

HERMIT HLRS (Germany) 1 2012
EU-PRACE

Archer EPSRC/NERC (UK) 1.6(2.6) 2014(Dec)

HORNET HLRS (Germany) 4 2014

Cray® XC40 Met Office 16 2015-2017

1 PetaFlop =1 quadrillion operations per second

World’s #2 PetaFlops Year
Machine

Titan US DoE (Oak Ridge 20 (!?!) 2014
National Lab)



Progress in our ability to exploit B

Met Office

H Ig h Pe rfo rm a n Ce CO m p u te rS Joint Weather and Climate
25km AGCM — Y OGCM, multi-decadal ensembles Research Programme

A partnership in climate research

Sustained turnaround: ~1yr/day for each ensemble member

Year Type Cores Cores per | Cores used
available ensemble | concurrently
member, (potential)
optimal

2011 HadGEM3 HECToR CRAY 22,000 ~1500 ~1500
GA3 (UK) XT4 (~1,500)

2012 HadGEM3 HECToR CRAY 90,000 ~6,000 ~12,000
GA3 (UK) XE6 (~30,000)

2013 HadGEM3 HERMIT CRAY 110,000 ~6,000 ~30,000
GA3-4 (DE-PRACE) XE6 (~50,000)

2014 HadGEM3 Archer (UK)  CRAY 72,000 ~6,500 ~20,000
GA7 and XC30 (118,000 (~80,000)
GC2 (+NEMO) from 12/14)

The main limitation continues to be 10. Max rate of data flow to CEDA storage: 2-8 TB/day
Final archive size for each experiment: O(1PB)




Representation of orography:
the importance of resolution

150km

The upper figure shows the surface
orography over the Alps at a resolution
of ~150km, as in a low resolution
climate model.

25km

Progression of
UK Hadley Centre "
climate models Das 1

20 levels
in ocean

HadGEM/HIGEM

5km

The lower figure shows the same field
at a resolution of 25km (HadGEM3-
N512), 5km and in the original SAR
30sec resolution.

Remember that orographic processes
are highly non-linear. SAR

30sec

University of
Reading Copyright PL. Vidale, 2014



Events associated with ARs in California

N96 (135 km)
N96 |
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Dettinger et /,%ter, 1 0 5 10 15 20 25 30 85 Demory et al (work in progress)




Box 1| Updated energy balance
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Figure B1| The global annual mean energy budget of Earth for the approximate period 2000-2010. Al fluxes are in Wm-2, Solar fluxes are in yallow
and infrared fluxes in pink. The four flux quantities in purple-shaded boxes represent the principal components of the atmospheric energy balance.
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What changes with resolution?

Hopefully, some important things do depend on resolution.

The global hydrological cycle
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Evaporation, transpiration 74

34 40 42 50 Soil moisture S
122 ‘et
Sraziai” Permafros

Storages: 1000*km?; Fluxes: 1000*km?®/year

Classic GCMs too
dependent on physical
parameterisation because
of unresolved atmospheric
transports

Role of resolved sea—>land
transport larger at high
resolution

Hydrological cycle more
intense at high resolution

Equivalent resolution at 50N:
270 km

135 km

90 km

60 km

40 km

25 km
Demory et al., Clim. Dyn., 2013



Relative roles of remote transport and local
re-cycling in forming precipitation over land
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N96

N216-N96

N512-N216

University of

Meridional eddy heat flux, V' T ® Reading

L. Novak et al. 2014: “Our results suggest that
high heat flux is conducive to a northward deflection of the jet, whereas
low heat flux is conducive to a more zonal jet”.

DJF MAM JJA SON

—-40 -32 -24 -16 - 0 8 16 24 32 40 —5.254.253.252.251.250.250.75 1.75 2.75 3.75 4.75
ms 'K ms 'K

. Mizielinski, with many thanks to L. Novak, Reading University N96 = 135km N216 = 60km N512 = 25km



Atmospheric

“eddie-driven” jets
governing European weather

250hPa winds, ensemble
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Origin of severe autumn storms near Europe

Storm Tracks PRESENT Wind BF12 Storm Tracks FUTURE Wind BF12
90N 9oN

12 14 16 184 2 2024 26 20 12 14 16 184 2 2024 26 2B 50

Haarsma et al GRL 2013



North Atlantic SST bias in

coupled models
Met Office

Traditional AOGCM, HadGEM2 (2009) High-Resolution AOGCM, HadGEM2
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© Crown copyright Met Office A. Scaife, GRL, 2011



Blocking frequency for Atlantic sector
— important for large-scale extremes

Met Office (hot summers/cold winters)
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© Crown copyright Met Office A. Scaife, GRL, 2011



Project Athena: Euro-Atlantic blocking and resolution

The role of mountains is key.

»*

ALFRED-WEGENER-INSTITUT
HELMHOLTZ-ZENTRUM FUR POLAR-
UND MEERESFORSCHUNG

Equally, Jung et al. (2014), Geophys. Res Lett. argued that small-scale atmospheric
phenomena such as fronts, mesoscale cyclones, and topographic jets play an
important role in driving the mean oceanic circulation .

Representation of topography is also important.

Role of horizontal resolution
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High-Resolution GCMs and ocean eddies Tropical Instability Waves
-> contribute to the mean state T R T
- sustain a more realistic ENSO

- Shaffrey et al (2009) and Roberts et al. (2009) found anf
that ENSO is more credibly simulated with a high-
resolution AOGCM.

- The correct mean state of the Tropical Pacific is TN '
sustained by meridional heat transport produced by o} m %ﬁ \N
TIWs ot | \34‘ : AQA

- Part of a larger investigation that aims to identify = o wgnude‘w

small-scale processes that emerge in high-resolution
models and impact large-scale simulations

> - o 4
\ o ) 4
o - =
A §)
N i o
R
‘“’ ca
b .
> o o =
20. El Nino DIJF anomalie ( rSST Il\l nd p Cipit n {mm ng ') from (a) the HadISST SST datsset and (b) the

AR precipation dataset and from (08 HIGEMI2 and (000 HalGEM1 2 Shaffrey et al., 2009, J. Clim; Roberts et al., 2009, J. Clim



Terrestrial water storage interannual variability
Opportunities to assess GCMs at the process level using

new observations. Example from GRACE.

Interannual variability of water stora%e anomaly over land
Detrended, seasonal cycle removed, exclude Antarctica and Greenland
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Demory, Boening et al (work in progress)



A preview of future GCM capabilities

* |n the future (going towards CMIP7) we expect to
explicitly resolve many processes and to rely much less
on parameterisations, which contain much empiricism.

* As an example of what expect of future GCMs, we
have run HadGEM3 at 12km without parametrised
convection. This has a dramatic impact on the quality
of the diurnal cycle of precipitation, which is
systematically wrong in standard (IPCC) GCMs:

— Rain always at local noon

— Rain a little every day
e QOur (UPSCALE) 12km GCM corrects both errors above.

University of
< Reading



Enabling the development of next-generation forecasting systems.

N1024: a 12km GCM

- Ensembles of 5-yr simulations with multiple physics
configurations, ranging GA3 to GABG.

 First time that a Global Climate Model leads its
Numerical Weather Prediction (NWP) “parent” in
resolution (current MO NWP still at 25km)

«  We developed both:

(top left) Hou \yOLRfomgI b ]
N1024 with parameterised convection

(top right) Hou IyOLRfomgI obal
41N N1024wth explicit convection
Ml (smagorinsky)

o standard HadGEMS3-A versions, with parameterised
convection and

(bottom left) Hourly Infra-Red from
y MTSAT satellite

» experimental versions with explicit convection.

101 caveats of using explicit convection at 12km...

.. but 6km soon and 4km in 2015
Consider the explicit convection version just as a process study:
« We don’ t represent convection at 12km (or even at 1km properly)!
» But the convective parameterisation has big issues too

* Probably the lowest resolution for which we can consider switching off the
parameterisation — see CASCADE

« And mid-latitudes almost certainly not as good as with parameterisation



Local time of peak precipitation for 12km models
(diurnal cycle) — Mar-Feb 08/09

Param convection (N1024 GA4)

A8

A
o 4

M. Roberts et al.

TRMM-3B42v6A thanks to R.

Schiemann

JWCRP High-
Resolution
Climate
Modelling
Programme




Precipitation spectra,

GCM comparison with TRMM
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A partnership in climate research
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Meridional mean 3-hourly rainfall in Sahel

TRMM 3B42_vn7
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M. Vellinga, M. Roberts et al. 2014, unpublished



The updated state of our ighorance:
level of agreement in CMIP5 (2013)

CMIP5 CMIP3

RCP85: 2081-2100 DJF

SRES-A2: 2081-2100

-----

the hydrological cycle, particularly at regional scale
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Knutti and Sedlacek, 2013 Precipitation change (%)




From CMIP3 to CMIP6

Coupled Model Intercomparison Project, part of the
Intergovernmental Panel on Climate Change (IPCC) process.

* |n CMIP3 the typical resolution was 250km in the
atmosphere and 1.5° in the ocean;

 more than seven years later, in CMIP5, this had only
increased to 150km and 1° respectively.

e Current GCMs can operate in full climate mode (simulation
length 10s to 100s of years, in ensemble mode), with mesh
sizes of ~20km in the atmosphere and 1/4° in the ocean.

— the benefits of higher resolution (~¥20km) have been abundantly
demonstrated, albeit mostly outside the CMIP exercise,

— there has never been a systematic investigation of these
benefits in the context of a multi-model assessment.

University of
< Reading



Readiness for CMIP6 and
outlook for CMIP7

e PRIMAVERA now submitted to the EU’s Horizon
2020 call

— PRocess-based climate sIMulation: AdVances in high-
resolution modelling and
European climate Risk Assessment

— Coordinator: M. Roberts (MO)
— Scientific Coordinator: P.L. Vidale (NCAS)

e Qverarching aim:

— To develop a new generation of advanced and well-
evaluated high-resolution global climate models,
capable of simulating and predicting regional climate
with unprecedented fidelity.

University of
< Reading




The roadmap to PRIMAVERA ... | #&&=-

Joint Weather and Climate

We have some evidence of phenomena that, when Research Programme
simulated with current GCMSs, are insensitive to resolution; "™ erameeresee

— Global radiative budget

— ENSO-driven ocean—>land transports

- MJO
Some examples of phenomena that, in our GCMs are resolution-dependent

— Emergence of backscatter in energy spectra

— Precipitation distribution

— Ocean - Land transports of water

— Mid to high-latitude eddy transports - jets - weather

— Storm intensities (tropical, extra-tropical)

— Tropical Cyclone variability and response to drivers (e.g. ENSO, CC)

Most of these findings originate from a single model. We need a
systematic multi-model programme to investigate the robustness of our
results. PRIMAVERA and HighResMIP.

Coupled (AOGCM) and uncoupled (AGCM) responses are not always
consistent. However, effectively spinning up a high-resolution ocean model
remains a major obstacle for progress.




PRIMAVERA core experiments (HighResMIP)

and “Frontiers” simulations

Met Office
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Joint Weather and Climate

Institution MO KNMI'IC3 | CERFACS MPI AWI CMCC ECMWF
NCAS SMHI CNR
Model names | MetUM ECEarth Arpege ECHAM ECHAM CCESM IFS
NEMO NEMO NEMO MPIOM FESOM NEMO NEMO
Atmosph. 60-25km | T255-799 | T127-359 T63-255 T63-255 100-25km | T319-799
Res., core
Atmosph. 10-5km T1279-2047
Res., FCM
Oceanic Ya© V4O Ya 0.4-Vio 1-Ya Ya Ya
Res., core spatially
variable
Oceanic 11120 11120 11120 1/100 1-1/14° (1/16°)
Res., FCM spatially
variable

But it is not all about resolution...
Recent developments in convective parameterisation have improved:

— MJO: GFDL model (Benedict et al. 2013)
— Diurnal cycle of precipitation: IFS model (Bechtold et al. 2013)
And there are proposed schemes that are scale-aware:

— Arakawa (2011)

— Bechtold et al. (2013)
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Summary of Global Climate

Joint Weather and Climate

MOde”ing at the Petascale Research Programme

A partnership in climate research

Much has changed in global climate modelling from the time when
climate GCMs could not rival weather forecast (NWP) models in
their ability to simulate the building blocks of climate;

Not interested in downscaling; focus on emerging processes and
scale interactions.

Still a long way to go in how we:

— Define and follow standard experimental protocols: proposal for
HighResMIP

— Assess our models as a community, using a process-understanding
approach

— Quantify the robustness of our findings and the trustworthiness of our
model projections

Running High-Resolution GCMs on Petascale HPC is trivial(-ish)

Data analysis remains the principal challenge: we need a community
approach, of the type used to exploit satellite missions.
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CHRM papers (13 published in 2013-2014)

One of the big success stories from UPSCALE is our
having engaged ~20 expert research groups
worldwide in analyses that exploit our simulations.

J. Clim: M. Roberts et al., in press, on TCs in the UPSCALE campaign

e BAMS: K. Walsh et al., in press, reporting on the CLIVAR Hurricane
Working Group experiments

 JAMES: Shaevitz et al., in press, reporting on the CLIVAR HWG
experimental design

* J.Clim: Bell et al., published, on TCs and ENSO

* J.Clim: Daloz et al., in press, on emergent TC behaviour across a number
of state-of-the-art GCMs

 GRL: R. Allan et al., on using high-res (UPSCALE) GCM to reconstruct the
past history of the radiative budget

* Nature (submitted in late October): M. Vellinga et al., on the organisation
of convection in West Africa



