

Joint Weather & Climate Research Programme

Pier Luigi Vidale

Willis Professor of Climate System Science and Climate Hazards WCHL, National Centre for Atmospheric Science (NCAS), and Dept. of Meteorology, University of Reading, UK.

Marie-Estelle Demory, Reinhard Schiemann, Jane Strachan

Presented on behalf of Professor Vidale by: Bryan Lawrence

Professor of Weather and Climate Computing, University of Reading, and Director of Models and Data, National Centre for Atmospheric Science

Malcolm Roberts

Met Office Hadley Centre, Exeter, UK

Matthew Mizielinski, Jo Camp, Lizzie Kendon

(with thanks to the many Met Office groups Involved in model development and elsewhere)

NIG24 on 03.04/2008 at 01Z

Model development and assessment philosophy

- No pretty models; rather a <u>modelling system</u> able to increase our understanding of the mechanisms that govern the climate system:
 - Not so important whether the model looks good or bad, but that it answers the question of why something happens in the climate system
 - While we develop, we prefer a bad result for the right reasons to a good result for the wrong reasons
- As much as it is feasible, only change one thing at a time, so that we can build a consistent and traceable chain of understanding
- Bottom line: we do not tune our models each time that we change resolution

HPC available to UK weather and climate scientists

Machine	Owner	PetaFlops	Year
HERMIT	HLRS (Germany) EU-PRACE	1	2012
Archer	EPSRC/NERC (UK)	1.6(2.6)	2014(Dec)
HORNET	HLRS (Germany)	4	2014
Cray® XC40	Met Office	16	2015-2017

1 PetaFlop = 1 quadrillion operations per second

World's #2 Machine	Owner	PetaFlops	Year
Titan	US DoE (Oak Ridge National Lab)	20 (!?!)	2014

Progress in our ability to exploit High Performance Computers

25km AGCM — 1/4° OGCM, multi-decadal ensembles Sustained turnaround: ~1yr/day for each ensemble member

Joint Weather and Climate Research Programme

A partnership in climate research

Year	Model	Machine	Туре	Cores available	Cores per ensemble member, optimal	Cores used concurrently (potential)
2011	HadGEM3 GA3	HECToR (UK)	CRAY XT4	22,000	~1500	~1500 (~1,500)
2012	HadGEM3 GA3	HECToR (UK)	CRAY XE6	90,000	~6,000	~12,000 (~30,000)
2013	HadGEM3 GA3-4	HERMIT (DE-PRACE)	CRAY XE6	110,000	~6,000	~30,000 (~50,000)
2014	HadGEM3 GA7 and GC2 (+NEMO)	Archer (UK)	CRAY XC30	72,000 (118,000 from 12/14)	~6,500	~20,000 (~80,000)

The <u>main limitation</u> continues to be IO. Max rate of data flow to CEDA storage: 2-8 TB/day

Final archive size for each experiment: O(1PB)

Representation of orography: the importance of resolution

The upper figure shows the surface orography over the Alps at a resolution of ~150km, as in a low resolution climate model.

The lower figure shows the same field at a resolution of 25km (HadGEM3-N512), 5km and in the original SAR 30sec resolution.

Remember that orographic processes are highly non-linear.

150km

25km

5km

SAR 30sec

Events associated with ARs in California

Average number of days necessary to obtain half the total annual precipitation

Fluxes: W/m²

Demory et al., Clim. Dyn., 2013 Figure adapted from Trenberth et al, 2009

What changes with resolution?

Hopefully, some important things do depend on resolution. The global hydrological cycle

- Classic GCMs too dependent on physical parameterisation because of <u>unresolved</u> atmospheric transports
- Role of <u>resolved</u> sea → land transport larger at high resolution
- Hydrological cycle more intense at high resolution

Equivalent resolution at 50N:

270 km

135 km

90 km

60 km

40 km

25 km

Demory et al., Clim. Dyn., 2013

Relative roles of remote transport and local re-cycling in forming precipitation over land

Meridional eddy heat flux, V'T'

N96 = 135 km N216 = 60 km N512 = 25 km

L. Novak et al. 2014: "Our results suggest that <u>high</u> heat flux is conducive to a <u>northward</u> deflection of the jet, whereas <u>low</u> heat flux is conducive to a more <u>zonal</u> jet".

Atmospheric "eddie-driven" jets governing European weather

Origin of severe autumn storms near Europe

North Atlantic SST bias in coupled models

Blocking frequency for Atlantic sector – important for large-scale extremes (hot summers/cold winters)

© Crown copyright Met Office

Project Athena: Euro-Atlantic blocking and resolution The role of mountains is key.

* ALFRED-WEGENER-INSTITUT
HELMHOLTZ-ZENTRUM FÜR POLARUND MEERESFORSCHUNG

Equally, Jung et al. (2014), Geophys. Res Lett. argued that small-scale atmospheric phenomena such as fronts, mesoscale cyclones, and topographic jets play an important role in driving the mean oceanic circulation.

Representation of topography is also important.

High-Resolution GCMs and ocean eddies

- → contribute to the mean state
- → sustain a more realistic ENSO
- Shaffrey et al (2009) and Roberts et al. (2009) found that ENSO is more credibly simulated with a high-resolution AOGCM.
- The correct mean state of the Tropical Pacific is sustained by meridional heat transport produced by TIWs
- Part of a larger investigation that aims to identify small-scale processes that emerge in high-resolution models and impact large-scale simulations

Tropical Instability Waves

FIG. 20. El Niño DJF composite anomalies for SST (K) and precipitation (mm day⁻¹) from (a) the HadISST SST dataset and (b) the CMAP precipitation dataset and from (c),(d) HiGEM1.2 and (e),(f) HadGEM1.2.

Terrestrial water storage interannual variability

Opportunities to assess GCMs at the process level using new observations. Example from GRACE.

A preview of future GCM capabilities

- In the future (going towards CMIP7) we expect to explicitly resolve many processes and to rely much less on parameterisations, which contain much empiricism.
- As an example of what expect of future GCMs, we have run HadGEM3 at 12km without parametrised convection. This has a dramatic impact on the quality of the diurnal cycle of precipitation, which is systematically wrong in standard (IPCC) GCMs:
 - Rain always at local noon
 - Rain a little every day
- Our (UPSCALE) 12km GCM corrects both errors above.

Enabling the development of next-generation forecasting systems. N1024: a 12km GCM

- Ensembles of 5-yr simulations with multiple physics configurations, ranging GA3 to GA6.
- First time that a Global Climate Model leads its Numerical Weather Prediction (NWP) "parent" in resolution (current MO NWP still at 25km)
- We developed <u>both</u>:
 - standard HadGEM3-A versions, with parameterised convection and
 - · experimental versions with explicit convection.

N1024 with parameterised convection

(top right) Hourly OLR from global N1024 with explicit convection (Smagorinsky)

(bottom left) Hourly Infra-Red from MTSAT satellite

101 caveats of using explicit convection at 12km...

... but 6km soon and 4km in 2015

Consider the explicit convection version just as a process study:

- We don't represent convection at 12km (or even at 1km properly)!
- But the convective parameterisation has big issues too
- Probably the lowest resolution for which we can consider switching off the parameterisation – see CASCADE
- And mid-latitudes almost certainly not as good as with parameterisation

Local time of peak precipitation for 12km models (diurnal cycle) – Mar-Feb 08/09

Param convection (N1024 GA4)

22 23 0 1 20 19 18 17 16 15 14 13 12 11 10 9

Explicit deep (N1024)

M. Roberts et al.

JWCRP High-Resolution Climate Modelling Programme

0 6 12 18 24

Precipitation spectra, GCM comparison with TRMM

Joint Weather and Climate Research Programme

A partnership in climate research

The updated state of our ignorance: level of agreement in CMIP5 (2013)

Difficult to trust climate model projections of changes in the hydrological cycle, particularly at regional scale

From CMIP3 to CMIP6

Coupled Model Intercomparison Project, part of the Intergovernmental Panel on Climate Change (IPCC) process.

- In CMIP3 the typical resolution was 250km in the atmosphere and 1.5° in the ocean;
- more than seven years later, in CMIP5, this had only increased to 150km and 1° respectively.
- Current GCMs can operate in full climate mode (simulation length 10s to 100s of years, in ensemble mode), with mesh sizes of ~20km in the atmosphere and 1/4° in the ocean.
 - the benefits of higher resolution (~20km) have been abundantly demonstrated, albeit mostly outside the CMIP exercise,
 - there has never been a systematic investigation of these benefits in the context of a multi-model assessment.

Readiness for CMIP6 and outlook for CMIP7

- PRIMAVERA now submitted to the EU's Horizon 2020 call
 - PRocess-based climate sIMulation: AdVances in high-resolution modelling and
 European climate Risk Assessment
 - Coordinator: M. Roberts (MO)
 - Scientific Coordinator: P.L. Vidale (NCAS)
- Overarching aim:
 - To develop a new generation of advanced and wellevaluated <u>high-resolution</u> global climate models, capable of simulating and predicting regional climate with unprecedented fidelity.

The roadmap to PRIMAVERA

Joint Weather and Climate Research Programme

A partnership in climate research

- We have some evidence of phenomena that, when simulated with current GCMs, are insensitive to resolution:
 - Global radiative budget
 - ENSO-driven ocean → land transports
 - MJO
- Some examples of phenomena that, in our GCMs are resolution-dependent
 - Emergence of backscatter in energy spectra
 - Precipitation distribution
 - Ocean → Land transports of water
 - Mid to high-latitude eddy transports → jets → weather
 - Storm intensities (tropical, extra-tropical)
 - Tropical Cyclone variability and response to drivers (e.g. ENSO, CC)
- Most of these findings originate from a single model. We need a systematic multi-model programme to investigate the robustness of our results. PRIMAVERA and HighResMIP.
- Coupled (AOGCM) and uncoupled (AGCM) responses are not always consistent. However, effectively spinning up a high-resolution ocean model remains a major obstacle for progress.

PRIMAVERA core experiments (HighResMIP) and "Frontiers" simulations

Joint Weather and Climate

						00111	t vvcatrict and On
Institution	MO	KNMI IC3	CERFACS	MPI	AWI	CMCC	ECMWF
	NCAS	SMHI CNR					
Model names	MetUM	ECEarth	Arpege	ECHAM	ECHAM	CCESM	IFS
	NEMO	NEMO	NEMO	MPIOM	FESOM	NEMO	NEMO
Atmosph.	60-25km	T255-799	T127-359	T63-255	T63-255	100-25km	T319-799
Res., core							
Atmosph.	10-5km						T1279-2047
Res., FCM							
Oceanic	1/40	1/40	1/4	0.4-1/40	1-1/4	1/4	1/4
Res., core					spatially		
					variable		
Oceanic	1/120	1/12°	1/12°	1/10°	1-1/14°	(1/16°)	
Res., FCM					spatially		
					variable		

But it is not all about resolution...

- Recent developments in convective parameterisation have improved:
 - MJO: GFDL model (Benedict et al. 2013)
 - Diurnal cycle of precipitation: IFS model (Bechtold et al. 2013)
- And there are proposed schemes that are scale-aware:
 - Arakawa (2011)
 - Bechtold et al. (2013)

Summary of Global Climate Modelling at the Petascale

Joint Weather and Climate Research Programme

A partnership in climate research

- Much has changed in global climate modelling from the time when climate GCMs could not rival weather forecast (NWP) models in their ability to simulate the building blocks of climate;
- Not interested in downscaling; focus on emerging processes and scale interactions.
- Still a long way to go in how we:
 - Define and follow standard experimental protocols: proposal for HighResMIP
 - Assess our models as a community, using a process-understanding approach
 - Quantify the robustness of our findings and the trustworthiness of our model projections
- Running High-Resolution GCMs on Petascale HPC is trivial(-ish)
- <u>Data analysis remains the principal challenge</u>: we need a community approach, of the type used to exploit satellite missions.

Joint Weather and Climate Research Programme

A partnership in climate research

CHRM papers (13 published in 2013-2014)

One of the big success stories from UPSCALE is our having engaged ~20 expert research groups worldwide in analyses that exploit our simulations.

- J. Clim: M. Roberts et al., in press, on TCs in the UPSCALE campaign
- BAMS: K. Walsh et al., in press, reporting on the CLIVAR Hurricane Working Group experiments
- **JAMES**: Shaevitz et al., in press, reporting on the CLIVAR HWG experimental design
- J. Clim: Bell et al., published, on TCs and ENSO
- J. Clim: Daloz et al., in press, on emergent TC behaviour across a number of state-of-the-art GCMs
- **GRL**: R. Allan et al., on using high-res (UPSCALE) GCM to reconstruct the past history of the radiative budget
- Nature (submitted in late October): M. Vellinga et al., on the organisation
 of convection in West Africa