Digitals Twin Thinking for HPC in Weather and Climate

Bryan Lawrence

NCAS & University of Reading: Departments of Meteorology and Computer Science

19th ECMWF HPC Workshop

Outline		

Digital Twins Definitions Interventions

Promises

Weather and Climate Choices

Existing Practice Increasing Collaboration

A new world? ESM-Twins

Summary

Digital Twins ●○		
Digital Twins		

What is a digital twin? Google says"

"A digital twin is a digital representation of a physical object, process or service. ... A digital twin is, in essence, a computer program that uses real world data to create simulations that can predict how a product or process will perform."

You would be forgiven for thinking that sounds rather like what we call a model!

Destination Earth defines a digital twins as

"mirrors of reality, simulators that replicate reality constrained by real time data."

You would be forgiven for thinking that sounds like data assimilation.

We have been doing digital twins for a long time!

Some¹ have postulated a "leap in information intervention" as part of delivering weather and climate digital twins. What could this mean?

- "the challenge will be to design a digital twin that allows users to intervene, extract information and influence the system trajectory across time and space, as done — albeit often unwittingly — in the real world."
- "tasks like simulations, ..., post-processing ...are ...executed on federated computing infrastructures, feed data into virtual data repositories with standardized metadata, and from which a heavily ML-based toolkit extracts information that can be manipulated in any possible way."
- "We can literally grab the earth, anyone, and see what the consequences of their actions mean for how things will evolve, what if ..."
 - (We have to put "their actions" into our model, whether that is an a representation of agricultural policy (a model) or some other process or action.)

 1 Quotes from Bjorn Stevens SC20 talk and Bauer et al "A digital twin of Earth for the green transition".

Information Intervention?

Some¹ have postulated a "leap in information intervention" as north delivering weather and climate digital twins. W

- "the challenge will be to design a digital twin the Computational Steering intervene, extract information and influence the time and space, as done – albeit often unwitting
- "tasks like simulations, ..., post-processing ...a. federated computing infrastructures, feed data i repositories with **standardized metadata**, and f ML-based toolkit extracts information that can be possible way."
- post-processing. "We can literally grab the earth, anyone, and see consequences of their actions mean for how things will ...
 - (We have to put "their actions" into our mod representation of agricultural policy (a mode process or action.)

Embedding and/or coupling (arbitrary?) models in workflow.

Data mgmnt. &

workflow engines

to allow (arbitrary?)

- cal world "

¹ Quotes from Bjorn Stevens SC20 talk and Bauer et al "A digital twin of Earth for the green trans

	Promises ●○○○		
Weather and C	limate Digita	l Twins?	

"predict how a product or process will perform" maybe

"project a set (Y) of possible futures and how they interact with X"

(X = a set of possible societally relevant systems/actions etc)

	Promises ●○○○		
Weather and	d Climate Digita	Il Twins?	

"predict how a product or process will perform" maybe

"project a set (Y) of possible futures and how they interact with X"

(X = a set of possible societally relevant systems/actions etc)

Leads to Two Key Promises:

Scenario Evaluation

If we do this, then what? Typically being expressed in terms of climate, even if the interest is in high impact weather.

Democratising Access

Going beyond data access, so that those interested in *X* can exploit the twin in some new ways.

	Promises ○●○○		
Implementation	ר?		

Leads to some questions:

- 1. What do we mean by scenarios? (Who decides and defines the *Y* scenarios? How does the *X* community interact with the decision and definition?)
- 2. What do we mean by "going beyond" and "data access" to deliver *X* (and for whom, "democracy" is a very inclusive word?)
- 3. How is this different from existing practice?

	Promises ○O●O		
Abstract Practi	calities		

Assumptions:

- 1. At scale, scenarios will be hierarchical: from a small set of expensive simulations *Y* we can investigate *X* different application scenarios. We might think of *X* as applications.
- 2. To be meaningfully different from existing practice the implementation of "going beyond data access" for *X* must be real.
- 3. *X* involves running additional code and or changing parameters/inputs for the code running *Y*.
- 4. True computational steering of Y can only be done by a very small number of "users" (possibly as few as one).
- 5. Recomputation of *Y* scenarios is not generally affordable to support arbitrary X (next slide)

	Promises ○OO●		
– .		0	

To compute or re-compute?

- The IPSL contribution to CMIP6 simulated o(50K) "useful" years (and o(150)K years overall), and in doing so consumed o(6) TJ, and stored o(1) PB of data for ongoing analysis.¹
 - => making 1 PB of useful data cost 2TJ
- JASMIN currently has o(50)PB of spinning disk and consumes under 250kW²
 - ► => storing 1 PB of useful data for a year costs 0.16TJ

But

- We might argue that costs for compute will fall faster than for (spinning disk) storage.
- We might then argue that will only happen until we make more use of SSD, then compute and storage will fall in tandem?
- ...and then there is tape. Near zero energy cost when at rest!

¹Rounded from figures compiled by IS-ENES3 and reported by M. ACosta at the IS-ENES3 General Assembly, March 2020

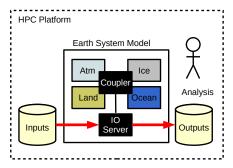
²Not including cooling, but including a 10K core CPU batch cluster.

	Promises ○OO●		
To compute	e or re-compute	?	

The IPSL (and o(15)		simulated o(50K) "useful" years n doing so consumed o(6) TJ,
and sto		going analysis. ¹
▶ =>		cost 2TJ
JASMIN	More caveats: We can	spinning disk and consumes
under 2	do better by looking	
▶ =>		or a year costs 0.16TJ
But	hulk averages. We	
We might	mood to understant	pute will fall faster than for
(spinning	usage patterns.	
We might	L	happen until we make more
		torage will fall in tandem?
and the	en there is tape. Near ze	ero energy cost when at rest!

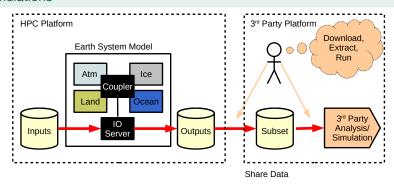
Currently vastly cheaper to store for re-use than re-compute and likely to remain so.

¹Rounded from figures compiled by IS-ENES3 and reported by M. ACosta at the IS-ENES3 General Assembly, March 2020

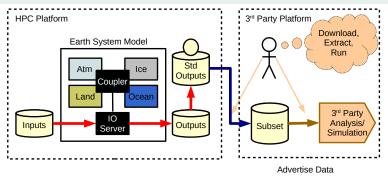

²Not including cooling, but including a 10K core CPU batch cluster.

		Existing Practice			
Dhase 1. Individuals and Croups					


Phase 1: Individuals and Groups.



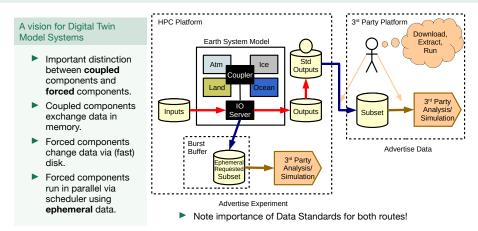
- All parties are well known to each other and communicate using personal contact.
- Often relatively inexpensive. Much re-running of simulations.
- Experiment definitions may or may not be well understood by all parties. Simulator are authors.



- Sharing files "as is", with ad-hoc information systems (e.g wikis)
- Considerable overheads for data consumers (unfamiliar formats, documentation etc).
- Experiment definitions may or may not be well understood by all parties. Simulators are authors.

Phase 3: Collaboration at a distance (in time and space). Multiple groups ...

- Data producers and data consumers groups are not (well) known to each other.
- Standardised data files are described using machine readable catalogs and shared using standard protocols. Significant overheads in production to reduce friction in consumption.
- Experiment definitions may or may not be well understood by all parties, but simulators generally not authors.


National Centre for Atmospheric Science

 Digital Twins
 Promises
 Existing Practice
 A new world?
 Summary

 00
 000
 000
 000
 000
 0

From an ESM to a Digital Twin - A simple vision

- Community have to agree on the experiment that is run so that not only those running the ESM itself, but those exploiting **both** the ephemeral and standard data have what they need and understand the simulation context.
- Standard data goes to data lakes.

National Centre for Atmospheric Science Digitals Twin Thinking for HPC in Weather and Climate Bryan Lawrence - 19th ECMWF HPC Workshop

		A new world? ○●○○○	
Implications	- Part 1		

- There is a technical route to split notions of X and Y around X being forced by Y.
- Definitions of Y need to be well promulgated ("Advertise Experiments").
 - ▶ But *X* community may still want to interact around definitions of *Y*.
- Coupling models is "business as usual", we worry about performance, portability, productivity as we always have.
- Higher frequency and/or higher resolution data can be available for a shorter time than standard outputs on high performance storage.
 - The group of users will likely still need standardised data interfaces, but are more likely to be like the phase 1/2 community.
 - The more democratic this is, the more they may need their own analysis environments.
 - Community of third party simulators using forcing data; will need HPC access and resources.

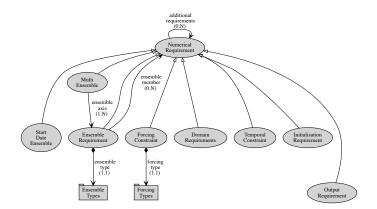
		A new world? ○○●○○	
Implications - F	'art 2		

- Interaction between scheduler, burst buffer and third party simulations needs thinking about.
 - Existing HPC concepts all about "job control", but we might need to think a bit more about pub/sub (both interfaces and "opportunity advertisement").
 - Those running Y may not be in a position to consider resourcing all X (or even desire to do so, nor in a position to evaluate the cost or value of X ... if X is related to human behaviour it might involve very large numbers of small simulations.)
- Increasing role for virtualisation on HPC platform, to support third party computational environments. Containers not a luxury, a core service!
- Third party analysis environments can be very different technically than core simulation environments (a la https://jasmin.ac.uk).

Digital Twins	Promises	Existing Practice	A new world?	Summary			
OO	0000		○○○●○	O			

On Advertising Experiments

Simulations are complex:



National Centre for Atmospheric Science Digitals Twin Thinking for HPC in Weather and Climate Bryan Lawrence - 19th ECMWF HPC Workshop

	A new world? ○○○○●	

Communities need to agree on requirements

Some of these requirements will be generated by "privileged" X communities, but all X communities need to understand what has been done and why.

See Pascoe et.al (2020):https://doi.org/10.5194/gmd-13-2149-2020.

Digitals Twin Thinking for HPC in Weather and Climate Bryan Lawrence - 19th ECMWF HPC Workshop

		Summary ●
Summary		

- Weather and Climate has a lot of experience with Digital Twinning.
- ...but we have made promises about increased potential for "user intervention".
- We cannot afford to recompute or save everything.
- A practical route to increasing user intervention involves providing access to ephemeral data as well as more traditional data sharing.
- Ephemeral data can be used for more detailed analysis and chaining further simulation, but
- We may need to think quite hard about making that possible for others "beyond your mates". Implications for scheduling, new ideas (for HPC) about pub/sub job connection etc.

