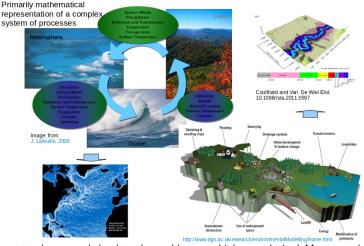
Why Cloud? Earth Systems Science Perspective or Data Driven Science Bringing Computation to the Data Whether that data started life in an instrument or a computer!

Bryan N Lawrence

The Big Picture 000000	Background Trends 000000	Cloud 000000	
			4

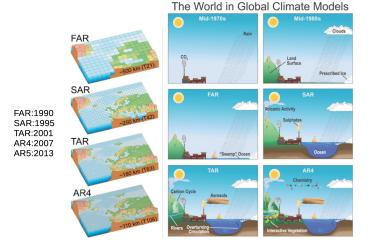
Outline


- ► The Big Picture: Communities and Infrastructure
- Background Trends: Output Data Growth
- Our Cloud Approach
- Summary

The Big Picture •••••• Communities Background Trend

Cloud 000000 Summary

Direct Numerical Simulation


We want to observe and simulate the world at ever higher resolution! More complexity!

Why Cloud? Earth Systems Science Perspective Bryan Lawrence - Warwick, June 2015 Centre for Environmental Data Analysis science and technology facilities council

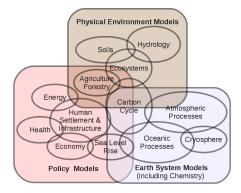
The Big Picture	Cloud	
00000		
Communities		

Increasing complexity



The Big Picture	Cloud	
00000		
Communities		

ESGF



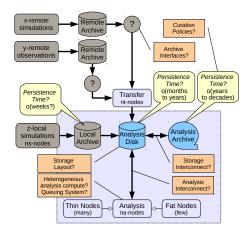
Why Cloud? Earth Systems Science Perspective Bryan Lawrence - Warwick, June 2015

Centre for Environmental Data Analysis science and technology facilities council

The Big Picture	Cloud	
000000		
Communities		

Communities

Many interacting communities, each with their own software, compute environments etc.


Figure adapted from Moss et al, 2010

The Big Picture	Background Trends	Cloud	
000000			
Infrastructure			

Where is this going?

- (Potentially) many different remote simulation sources. How long can the data remain at source?
- Interesting problems moving the data to a common location?
- How long can the data reside on disk at the analysis location? What about in the archive?
- How should we best organise the data?
- What are the best ways to organise analysis compute?
- What are the best ways to address analysis interconnect and I/O bandwidth?

Why Cloud? Earth Systems Science Perspective Bryan Lawrence - Warwick, June 2015 Centre for Environmental Data Analysis science and the children Research council

The Big Picture	Background Trends	Cloud	
000000			
Consequences			

Sharing

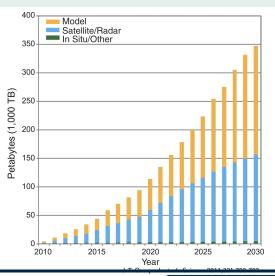
Science across scales

Lots of interacting communities

Lots of infrastructure

New sorts of infrastructure

Can we share infrastructure?

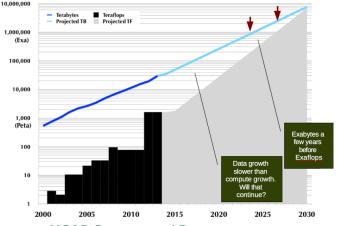


The Big Picture	Background Trends	Cloud	
	00000		
Data Growth			

Global Data Archival

Fig. 2 The volume of worldwide climate data is expanding rapidly, creating challenges for both physical archiving and sharing, as well as for ease of access and finding what's needed, particularly if you're not a climate scientist.

(BNL: Even if you are?)



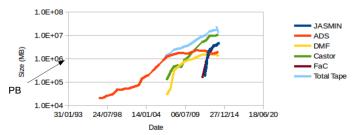
Why Cloud? Earth Systems Science Perspective Bryan Lawrence - Warwick, June 2015 Centre for Environmental Data Analysis Science and Technology Facilities council

The Big Picture	Background Trends	Cloud	
000000	0●0000	0000000	
Data Growth			

Institutional - NCAR

Storage, and power for storage, will dominate NCAR's compute budget within a few years! (Rich Loft, 2014).

NCAR Compute and Data (courtesy Gary Strand)



The Big Picture 000000 Data Growth Background Trends

Cloud 000000 Summary O

Institutional - STFC and CEDA

Growth of Selected Datasets at STFC

(Credit: Folkes, Churchill)

Predictions for JASMIN in 2020? 30 — 85 PB of unique data¹! But we think we could only fit only 30 PB disk in the physical space available²!

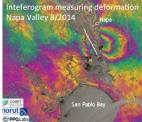
 $(^{1}$ Not including CMIP6, which might be anything from 30 PB up. 2 Unless we can throw out the CERC Tier1 centre with whom we share!)

National Centre for Atmospheric Science

The Big Picture 000000 Data Growth Background Trends

Cloud 000000 Summary

Sentinel 1



Sentinel 1A: Launched 2014 (1B due 2016)

- Key instrument: Synthetic Aperture Radar
- Data rate (two satellites: raw 1.8 TB/day, archive products ~ 2 PB/year)

COMET: Centre for Observation and Modelling of Earthquakes, Volcanoes, and Tectonics

(Picture credits: ESA, Arianespace.com, PPO.labs-Norut-COMET-SEOM Insarap study, ewf.nerc.ac.uk/2014/09/02/new-satellite-maps-out-napa-valley-earthquake/)

National Centre for Atmospheric Science Why Cloud? Earth Systems Science Perspective Bryan Lawrence - Warwick, June 2015

Centre for Environmental Data Analysis science and technology facilities council

The Big Picture	Background Trends	Cloud	
000000	0000●0	0000000	
Data Growth			

Sentinel Data Rates

Satellite	Launch Dates	Daily Data Rate	Product Archive
S1A, S1B	Apr 2014	1.8 TB/day raw	2 PB/year
S2A, S2B	Jun 2015	1.6 TB/day raw	2.4 PB/year
S3A, S3B	Oct 2015	0.6 TB/day raw	2 PB/year (L1,L2,L3)

with more satellites in the pipeline. Too easy to say "petabytes"!

The Big Picture	Background Trends	Cloud	
	000000		
Data Growth			

Sentinel Data Rates

Satellite	Launch Dates	Daily Data Rate	Product Archive
S1A, S1B	Apr 2014	1.8 TB/day raw	2 PB/year
S2A, S2B	Jun 2015	1.6 TB/day raw	2.4 PB/year
S3A, S3B	Oct 2015	0.6 TB/day raw	2 PB/year (L1,L2,L3)

with more satellites in the pipeline. Too easy to say "petabytes"!

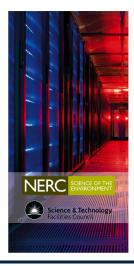
- Traditional approach: write data to tapestore, users retrieve scenes from a catalogue!
- Modern "big data" aproach: users want to do "whole mission" reprocessing!
 - e.g. QA4ECV (J-P Muller): bought 800 TB of disk in the JASMIN system, now running whole mission reprocessing 100x faster than their in-house cluster. Days to test new science instead of months. Massive improvement in scientific throughput!

The Big Picture 000000	Background Trends ○○○○○●	Cloud 0000000	
Frustrated Users			

U.S. National Academy

"Without substantial research effort into new methods of storage, data dissemination, data semantics, and visualization, all aimed at bringing analysis and computation to the data, rather than trying to download the data and perform analysis locally, it is likely that the data might become frustratingly inaccessible to users"

A National Strategy for Advancing Climate Modeling, 2012


Semantic Analysis: "substantial research effort" "new methods" "computation to data" "rather than trying to download" "frustratingly inaccessible" (to whom?)

The Big Picture 000000 JASMIN Background Trend

Cloud ●000000 Summary O

So we have built an "HPC-data" cloud: JASMIN

- 16 PB Fast Storage (Panasas, many Tbit/s bandwidth)
- ▶ 1 PB Bulk Storage
- Elastic Tape
- 4000 cores: half deployed as hypervisors, half as the "Lotus" batch cluster.
- Some high memory nodes, a range, bottom heavy.

Why Cloud? Earth Systems Science Perspective Bryan Lawrence - Warwick, June 2015

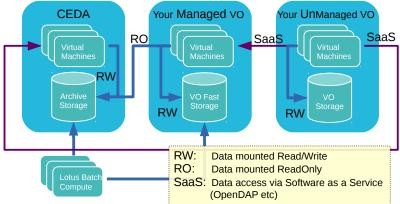
Centre for Environmental Data Analysis science and technology facilities council

The Big Picture	Background Trends	Cloud	
000000	000000	○●○○○○○	
Bringing Compute to the Data			

Virtual Organisations

Platform as a Service \longrightarrow Infrastructure as a Service

Example: NCAS will run a semi-managed virtual organisation (with multiple group work spaces), but large groups within NCAS can themselves also run virtual organisations.

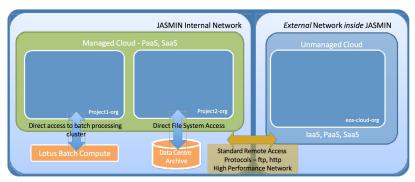

 The Big Picture
 Background Trends
 Cloud
 Summary

 000000
 000000
 000000
 0

 Bringing Compute to the Data
 0
 0
 0

High performance, curation + facilitation

Objective is to provide an environment with high performance access to curated data archive **and** a high performance data analysis environment!



National Centre for Atmospheric Science Why Cloud? Earth Systems Science Perspective Bryan Lawrence - Warwick, June 2015

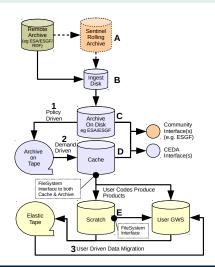
Centre for Environmental Data Analysis scienceand technology facilities council

The Big Picture	Background Trends	Cloud	
		0000000	
Dianian Computer to the Date			

Integrated Cloud Provisioning

Currently o(100) "Group Work Spaces" in the managed cloud serving o(100) "virtual organisations" and o(500) users (there is some overlap). Unmanaged cloud is currently in testing with a few brave souls.

The Big 00000 Bringing		o the Data		ackground 00000		Cloud ○OOO●OO		
Stri	uctu	ral V	/iew					
	_				_			
	CEDA AS	CEDA EO	CEDA Solar	IPCC DDC	etc	NERC Managed Analysis Computing	NERC Cloud Analysis Computing	etc
	(once BADC)	(once NEODC)	(once UKSSDC)		cit	(CEMS + Shared Systems for NCAS, MetO, NOC etc)	(EOS Cloud, Env WB etc)	
	CEDA Archive Services			npute Services				
	Data Centres, Curation, DB systems User management, External Helpdesk				Compute Cloud: PaaS (JAP +Generic Science VMs + User Management), IaaS External Helpdesk			
				JASI	MIN (Compute and Sto		
		W				oud + Tape Store + DMZ for data		


Internal Helpdesk

National Centre for Atmospheric Science

The Big Picture 000000 Bringing Compute to the Data	Background Trends 000000	Cloud ○OOOO●O	
Big Cache			

We need to build this out in the next six months, before we end up with PB and unhappy users!

National Centre for Atmospheric Science

The Big Picture 000000	Background Trends 000000	Cloud ○00000●				
Bringing Compute to the Data						
Cloudburst	ing					

The Big Picture	Background Trends	Cloud	Summary	
			•	
The End				

Final Remarks

- ► When we consider the entire workflow associated with environmental science, we realise that the "time in the supercomputer" **doing** simulation, or "the time in the satellite ground segment" or the "time at sea collecting data" is only a small part of the entire workflow.
- When we look at the trend in the balance of hardware spending nearly anywhere people are analysing (or producing) data, we see a trend towards a greater proportion of the funding on the storage, but
- ► We have yet to see a commensurate trend towards the spend for an appropriate software infrastructure for data, and
- ► We have yet to see an understanding by the institutions of the costs ahead, yet alone their already sunk costs.
- When the institutions get on top of this, they will come running "cloud-ward", but it's important to make sure that cloud is "data-intensive-ready"!

National Centre for Atmospheric Science

