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The future of climate modelling infrastructure?

IS-ENES3 Deliverable D2.1

Infrastructure Strategy for Earth System Modelling for 2024-2033
What is needed to sustain large-scale European earth system modelling
infrastructure from 2024 and beyond

Reporting period: 01/01/2022 — 31/03/2023

Authors: Bryan Lawrence (UREAD-NCAS), Fanny Adloff (DKRZ), Sylvie Joussaume
(CNRS-IPSL)

Modelling Groups Interviewed (June 2022) Representative European Projects Investigated (All

m French groups (IPSL, Cerfacs, of which extend to the end of 2026 or beyond)
Météo-France/CNRM) m EERIE
m Italy (CMCC) m OptimESM
m EC-Earth groups (BSC, DMI, KNMI, SMHI) m NextGEMS
m Germany (MPI-Met & DKRZ; AWI
y( . ) m ESM2025 ) enes

= UK groups (MetOffice, NCAS) = EPOC TN e
m Norwegian groups (NORCE, MetNorway) m OceanlICE
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Future of
Computing Hardware

Climate
Modelling

m Accelerators: Data movement,
arithmetic intensity.

Technical
Context

m Heterogeneity: Very different
characteristics between CPU and GPU
systems. Will we take on FPGA?

m Memory and Storage: Tiering,
bandwidth and latency (high
bandwidth memory)?

Big consequences for programmability
(portability, performance, productivity).
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m Accelerators: Data movement, m Emulation of existing components,
Technical arithmetic intensity. parameterisations, learned resolution.
Context m Heterogeneity: Very different m Developing new models using high
characteristics between CPU and GPU frequency data e.g. impact related.

systems. Will we take on FPGA? . .
m New analysis techniques

m Memory and Storage: Tiering, .
bandwi%lth and Iategncy (highg Big consequences for workflow and data

bandwidth memory)? handling.
Big consaquences fof rogrammabily
(portability, performance, productivity).

m Hardware drives us to high resolution,

New maths and algorithms? high cost, small ensembles. Big user

communities.

m How do we get parallelism in the
absence of strong scaling? New
algorithms, new maths? Parallel in
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m We care not only about $ and £, but
Joules!




@ Computing Context Word Salad
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The way we think
about this diagram
is now wrong (if it
was ever right).

These are not just
choices about
models, they might
be choices about
hardware as well!

Duratlon
Resolution
—Variability —Scenarios

Choices

Ensemble
Size

Data
Assimilation

Extremes
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Temporary
Storage

34 Party
[=9»-|  Analysis/

Simulation,

Ephemeral
Requested
Subset

Data Platform
{ Download,

H Extract,
H Analyse ™.
: . Run
N 34 Party
Analysis/
Simulation,

Data Workflows

m In-flight diagnostics supported by

a coupler and/or 10-server
(visualisations, ensemble
diagnostics, downstream models
using high frequency data).

Data published to data platforms
for wider sharing and analysis,

Data platforms supporting
co-located computation to
support bringing compute to the
data.



@ Data Workflows
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@ Data Workflows

Fgltiumr:tzf . Data Platform Ddelb a(; : . . .
Hodelling : ot Etract, a4 M In-flight diagnostics supported by
; % LR a coupler and/or |0-server
: T (visualisations, ensemble
ey diagnostics, downstream models
. i — opay \ | using high frequency data).
s/m?'ast:f:/n m Data published to data platforms

for wider sharing and analysis,

Temporary Y H
Storage —
:

m Data platforms supporting

: Ephemeral 3¢ Party co-located computation to
H Requested[=»=|  Analysis/ el
: Subset )} | Simulation support bringing compute to the

data.

Our view of producers and consumers will have to change as we treat large
modelling projects more like satellite missions:

m Well advertised in advance, community dicussions about what is important,
well documented, etc.

5 R We will need to invest even more in our data systems and standards!



Uncertainty

Future of a Global, decadal mean surface air temperature b British Isles, decadal mean surface air temperature (a)
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Hawkins & Sutton (2009) https://doi.org/10.1175/2009BAMS2607. 1

ses University of Hawkins & Sutton (2011) https://doi.org/10.1007/s00382-010-0810-6
Reading
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@ Storylines, Climate Modelling, and Vulnerabilty

IR @ (Lloyd & Shepherd (2020). https://doi.org/10.1111/nyas.14308)

Climate
Modelling
Large
ensembles
. Properties
Scenarios |~ -
Physical Thames Flood zone
processes Hydrology maps

Multiple different modelling approaches, multiple different communities, within the
physical climate modelling community and beyond.
Interesting issues around information and data flow!

High
- resolution
exemplars

Scientific
Context
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@ The seen and unseen climate

Fgltiumrgtzf Exploiting global ensemble prediction systems to investigate seasons and extremes
Modelling that COULD have occurred.
Observations Madel
a 2014 ©
Scientific L] § $ $
GG 205 mm 201 mm 175 mm
b 1988 d f
$
158 mm
[ — — ]
-10 0 10

SLP anomaly relative to 1980-2015 (hPa)

Observed and not yet realised climate states:

m a, b: The sea level pressure anomaly fields (in hPa, relative to the January MSLP field) of the two observed ERA
Januarys with highest rainfall totals: 2014 and 1988.

m cf: The sea level pressure anomalies of four extreme simulated Januarys, one of which — d — presents a potential
new record rainfall scenario

! UR’g"aE'S'I‘Iﬁ‘g m (Interesting question as to importance of UPSCALE effects. Could these have been seen in RCM simulations? )
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The seen and unseen climate

Exploiting global ensemble prediction systems to investigate seasons and extremes
that COULD have occurred.

Observations Model
° 2014
- — B0 The \mportance of
b = f using ensembles, not
only for statistics, but ‘
: to find storyline cases:
158 mm e k_ﬁ
ppre— ]
-10 o - 5‘ \I

SLP anomaly relative to 1980-2015 (hPa)

Observed and not yet realised climate states:

m a, b: The sea level pressure anomaly fields (in hPa, relative to the January MSLP field) of the two observed ERA
Januarys with highest rainfall totals: 2014 and 1988.

m cf: The sea level pressure anomalies of four extreme simulated Januarys, one of which — d — presents a potential
new record rainfall scenario

m (Interesting question as to importance of UPSCALE effects. Could these have been seen in RCM simulations? )
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Years Simulated (ky)

European CMIP6 effort in years as of 2022

CMIP6 European Modelling Centres

Resolution (km)
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@ Euro
pean CMIP6 effort in years as of 2022

Future of
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A spectrum of climate modelling

10K Spinup, Scenarios | Single Decadal Equilibrium| Process | Storyline
Time Control (Past, Model Predic- [Transient Studies | Timeslices|
& Future, Large tion Timeslices
Millenium | Sensitivity)] Ensembles| (Hindcasts,
(SMLEs) Forecasts)
Duration > 0(1000)y 0o(100)y o(10)y 0(10-100)d
1000y
| EsM | x | x| x x| \ \ |
Domain | Gem | | X | X X | X X | X | X |
| ReM | \ | x \ x | ox x|
Speed (SYPD) | >50 | >4 | >4 >1 | >1 >05 | >01 | >01 |
Ensemble Size | 1-1000 | o(1) | o(10) 10-100 | o(10) x NH* o) | o | o1 |
Atmos XY Res (km) \ 0(500) \ 100-500 \ 25-500 50-300 \ 25-500 1-100 \ 1-10 \ 1-10 \
Ocean XY Res (km) | 300+ | 100-250 | 25-250 25-250 |  25-250 10+ | 25+ | 25+ |
|

Exascale Status

| Currently impossible

Not currently usable

Currently some capability

(NH*: Evaluating a decadal prediction system might involve NH hindcasts, each with 0(10) ensemble members)



@ On Verifying and Validating Models

Future of
Definitions

Climate
Modelling

m Verification: “To establish the truth”, but we can never do that — a model is never a
closed system, there are always explicit, implicit, and 4" Rumsfeldian assumptions.

m Validation: “ To establish legitimacy”, but of necessity this is “legitimacy in context”
which is not necessarily the same as the quality of the representation of the real world
as embodied in the model and evaluated by comparison with observations!

See Oreskes et al (1994) and Parker (2020).

Fitness and Adequacy for purpose

m We need to avoid the “fallacy of affirming the consequent”. If A implies B, and we
observe B, in a non-closed system, we cannot be sure that there is not some other cause
C that also implies B. We're probably more familiar with thinking about this in the
context of compensating errors where we know our model might be getting “better” for
the wrong reasons.

m Adequacy and fitness also encompass practicality. | might think this model is better, but
another cheaper model may be adequate. Indeed a model we presume to be fitter may
be so impractical that it cannot be used ... which is of course where we are with our
kiviat diagram!

Fitness

! Unlvevsllyof
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*NorESM1-M
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Diversity &
Uncertainty

[

Knutti, et.al (2013) https://doi.org/10.1002/grl.50256

[¢33] University of
Reading
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@ Model Diversity and model uncertainty

Future of
Climate
Modelling A (b)
‘\- c 30 T T T T T T s
o 25t o o &
: e}
*NorESM1-M 8 O
2.0f o ]
*MRI-CGCM3 ! 15 r [ | $ B 7]
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s 1.0F Q b
Diversity & i — 05¢ % N
Uncertainty s 0.0 == ©
o w2 IV C4 C3 C2 C1 C0 SGDG
CSIRO-Mk3-6-0
—‘ Pairwise RMSE for simulations with different
numbers of shared components: C1 share only one
Knutti, et.al (2013) https://doi.org/10.1002/grl.50256 component, C2 two components, C4 differ only in

resolution. (Components have to be different, not

just parameters).
Boé (2018) https://doi.org/10.1002/2017GL076829

[s%3) University of
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*CNRM-CMS
*EG-EARTH

*NorESM1-M

*MRI-CGCM3
‘GISS-E2-R
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PSL-CM5A-MR
*CSIRO-MK3-6-0
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Knutti, et.al (2013) https://doi.org/10.1002/grl.50%

Model Diversity and model uncertainty
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European Model Diversity (2020)

(One set of Configured Models)

Future of HadGEM3-GC31-HH UKESM1-0-LL
Climate HadGEM3-GC31-HM | | UKESM1-1-LL
; HadGEM3-GC31-LL | | UKESMi-ice-LL
Modelling HadGEM3-GC31-LM =
HadGEM3-GC31-MH =~
HadGEM3-GC31-MM

NEMO

Diversity &
Uncertainty

ECMWF-IFS
i
7

European code families as of 2022 .
(“codebases”)

Extracted from the configured models registered for CMIP6

ICON-O

University of

Reading
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exploit it?
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Model Diversity Consequences

m We know that investing in building some classes of model requires a
huge effort from large communities.

m There is a finite number of communities that can make these sorts of
investment.

m But we know that model diversity matters, and making good use of it will
remain a key part of understanding climate uncertainty for the
foreseeable future.

m Are there risks in too much interdependency on shared components?

B So what is the right amount of diversity, and how can we ensure we fully
exploit it?

| think we will need to spend more time as a community planning when and
where we can best use diversity!
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Summary

The future of climate modelling?

Diversity!

m There is no one clean definition of what a climate model is and when it is fit for
purpose. We will need to consider adequacy given validation for purpose when
constrained by cost.

m The George Box quote “ All models are wrong, some are useful”, might be

better adjusted to “All models are wrong, different ones are useful for
different purposes”.

m We are going to have to get used to a compromise between performance,
portability and (scientific) productivity.

m At scale, we are going to have to invest even more into data systems and
standards.

m At scale, as we invest more into particular platforms, we will need to think
about which platforms, and why, and manage scientific diversity.

m At scale, we are going to have to treat our investments more like satellite
missions, and justify our experiments in the court of our peers!
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