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Data assimilation for re-analyses: potential gains from
full use of post-analysis-time observations

By MARTIN JUCKES∗ and BRYAN LAWRENCE, British Atmospheric Data Centre, Rutherford Appleton
Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK

(Manuscript received 14 March 2005; in final form 30 September 2005)

ABSTRACT
In recent years a number of operational meteorological centres have completed multidecadal reanalyses of their ob-
servation records using a version of their operational analysis systems. These operational systems aim to approximate
the best possible analysis of the atmospheric state at a given time using all observations made prior to that time, and
require major resources to produce. Re-analyses are made with the same real-time systems because they can be done as
marginal activities on the back of operational efforts. In this paper, we examine some of the salient differences between
the use of optimal real-time analyses and optimal retrospective analyses in the context of a simple linear system. In
this case, the optimal real-time analysis could be obtained by the Kalman filter. When observations are available both
before and after the analysis time the additional information can, in principle, be exploited to improve on the Kalman
filter analysis. For linear systems the optimal retrospective analysis is given by the Kalman smoother, which combines a
forward and backward Kalman filter. Results comparing these methods are presented which demonstrate the importance
of using all the available data for a retrospective analysis. While using all future data is not yet tractable for retrospective
meteorological analyses, such techniques are of use for more limited re-analysis.

1. Introduction

Data assimilation systems are used in earth system science for
two main reasons: to provide initial conditions for forecast sys-
tems, and to synthesize available data to produce best estimates
of some part of, or all of, the system state. In recent years a great
effort has been put into producing reanalyses (e.g. Simmons and
Gibson, 2000; Kalnay et al., 1996): retrospective analyses of re-
cent observations using improved analysis systems. The use of a
forecast analysis system in a reanalysis does not make full use of
the observations (e.g. Cohn et al., 1994) because forecast systems
naturally take limited account of observations after the analysis
time (each cycle of the current ECMWF (The European Centre
for Medium-Range Weather Forecasts) system, for instance, pro-
duces two analyses 6 h apart, with the last admitted observations
coming 3 h after the later analysis1). In data processing termi-
nology, the optimal approach would use a “smoother”, which
exploits the whole time series of observations, rather than a
‘filter’, which deals with an ongoing stream of observations.
Cohn et al. (1994) emphasize the ability of the smoother to

∗Corresponding author.
e-mail: m.n.juckes@rl.ac.uk
1http://www.ecmwf.int/research/ifsdocs/CY28r1/Assimilation/
Assimilation-15-03.html
DOI: 10.1111/j.1600-0870.2006.00167.x

propagate information both upstream and downstream from an
observation. They also show that while, as is well known, ad-
dition of information in a fully optimal analysis scheme will
always improve the analysis, the same is not true of suboptimal
schemes of the kind widely used in the context of atmospheric
and oceanographic data assimilation.

Here we explicitly address the issue of the importance of post-
analysis-time observations on the quality of an analysis by com-
paring the performance of a Kalman filter (Kalman and Bucy,
1961) and a Kalman smoother on a simple random walk. De-
spite its simplicity, this allows us to investigate the effects that
various inaccuracies in the analysis system will have in the con-
text of varying system stability. While we use the simple random
walk system to demonstrate the importance of future data to an
analysis, further work (Juckes, 2005) shows an alternative tech-
nique applied to ozone re-analysis which exploits future data in
practice.

For linear systems with Gaussian noise the Kalman filter de-
rives the optimal solution (minimising the squared error expec-
tation) at a given time using observations up to and including
that time, while the Kalman smoother gives the optimal using
observations both before and after the analysis time. These ap-
proaches will be referred to as “real-time” and “retrospective”
analyses below.

The Kalman filter and Kalman smoother are used here as they
are effective means of finding fully optimal analyses for the low-
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172 M. JUCKES AND B. LAWRENCE

order systems discussed here. The relationship between these
and various suboptimal implementations of 4D-VAR used in
atmospheric data assimilation are discussed in Li and Navon
(2001).

The comparison is made not only for the idealised situation
in which an unbiased model with random errors of known error
covariance is available but also for biased models with inac-
curately specified error covariances. A number of authors have
addressed the issue of model bias in data assimilation (Griffith
and Nichols, 1996; Dee and Da Silva, 1998; Bell et al., 2004)
by seeking to estimate the bias as an additional model variable
with some persistence. There does not appear to be much work,
however, quantifying the impact of bias and inaccurate statis-
tics on the analysis. This issue is addressed here in the context
of a very simple model which permits analytic solution of the
analysis error covariances.

2. Model system: the Langevin equation

We investigate an extremely simple system in order to show
how the Kalman filter and smoother are affected by changes in
relative amplitude of observational and modelling errors, and
how instability and damping in the system affects the accuracy
of an analysis. Our investigation will be based on the behaviour
of a single linear mode described by the Langevin equation:

du
dt

= αu + γ + ςW , (1)

where α, γ and ς are constants and W is a Wiener process. The
standard Langevin equation has α < 0 and γ = 0, but these
restrictions are relaxed here so that results relevant to unstable
modes and to models with bias can be obtained.

Appendix A shows that this equation can be integrated over a
finite time interval �t to give a random walk:

u(t + �t) = θu(t) + � +
√

θ e, (2)

where θ = exp[α�t], � = γ�t and e is a white noise process
(Kloeden and Platen, 1992). The scaling of the noise term in
eq. (2), which occurs as a result of the underlying Wiener process
being integrated over the time interval �t , could be absorbed into
the definition of e. However, it is convenient to keep this scaling,
as it results in greater symmetry between results obtained for
forward and reverse assimilation algorithms and hence in greater
simplicity for the results obtained for the Kalman smoother. As
defined here, e is independent of the deterministic component
of the system (i.e. θ ). The variance of e, the model noise, is
determined in Appendix A. For small �t it is given by

σ 2
m = ς2�t + O(�t)2.

Suppose that a realisation of the above random walk is
“observed” at times t = k�t :

uo:k = u(k�t) + eo, (3)

where uo:k is an observation taken at interval k, and eo is the
observational noise with variance σ 2

o.
θ can be varied to look at the different behaviour of unstable

(θ > 1), neutral (θ = 1) and damped (θ < 1) systems (we assume
α real and hence θ > 0). Equation (2) should provide insight into
the behaviour of growing (θ > 1) and decaying (θ < 1) modes
within a higher-order analysis system.

3. Perfectly characterised model

A perfectly characterised model is here understood to be a model
which has random errors with known statistical properties. This
is distinct from what is known in the meteorological literature
as the “perfect model” situation in which the model is assumed
to have no random component and no errors.

The standard forms of the Kalman filter and Kalman smoother
can easily be applied to this system to obtain optimal analyses
for a given set of observations. The equations and a complete
description of the notation being used are given in Appendix B.

If observations are equally spaced and the model error vari-
ances do not vary in time, the analysis error will also be indepen-
dent of time. The error variance estimated by the Kalman filter
must then satisfy

1

B̂ f
= 1

σ 2
o

+ 1

θ 2 B̂ f + θσ 2
m

, (4)

where B̂ f is the analysis error variance for the Kalman filter
(subscripts b and s will be used for quantities associated with
the backward filter and Kalman smoother). The equation for the
backward filter is obtained if θ is replaced by θ−1 in eq. (4).
Solving eq. (4), the analogous equation for B̂b and combining
the results to calculate the Kalman smoother analysis error co-
variance gives

B̂ f = σ 2
o

2θ
[
√

μ2 − 4 − (θ−1 − θ + x)], (5)

B̂b = θσ 2
o

2
[
√

μ2 − 4 − (θ − θ−1 + x)], (6)

B̂s = σ 2
m√

μ2 − 4
, (7)

where

μ = θ + θ−1 + x, and x = σ 2
m

σ 2
o

(8)

is the ratio of model error to observational error. The analysis
error variances are shown in Fig. 1, as functions of log2 θ , for x
= 0.04. This value of x corresponds to a situation in which the
model error, which accumulates between observations is small
compared with the observational error. For θ = 1 the forward and
backward Kalman filters have identical error variances, nearly
twice as large as the error variance of the Kalman smoother. The
error variance for the Kalman filter grows rapidly for θ > 1. In
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DATA ASSIMILATION FOR REANALYSES 173

Fig. 1. Analysis error variance for a random walk plotted against
log2θ :
for the Kalman smoother (heavy solid line), Kalman filter (solid line)
and backward Kalman filter (dashed). Equations (5)–(7) have been
evaluated with x = 0.04.

this situation the system is unstable, so errors in an analysis are
amplified in the forecast used for the background of the next
analysis. At large θ the error growth is such that the forecast
has minimal weight and the analysis error approaches the obser-
vation error. The backward Kalman filter has error covariances
which are identical to those of the forward Kalman filter mirrored
about θ = 1. The Kalman smoother combines the best of both
worlds. It effectively takes the Kalman filter solution for damped
modes and the backward KF solution for growing modes.

The difference in accuracy of the real-time and retrospective
analyses in the presence of strong instability can be illustrated
by looking at the large θ limit of eqs. (5)–(7):

B̂ f ≈ σ 2
o

(
1 − 1

θ 2

)
, (9a)

B̂s ≈ B̂b ≈ σ 2
m

θ
. (9b)

This shows that the optimal real-time analysis only gives a slight
improvement over the observations in the highly unstable sit-
uation. For the retrospective analysis, on the other hand, the
error actually decays towards zero as the degree of instability
increases.

For neutral modes the ratio B̂s/B̂ f approaches unity for large
x, when the analysis is, in both instances, dominated by a single
observation, and approaches 0.5 for small x, when the analysis is
dominated by information carried from asynchronous observa-
tions by the model. The Kalman smoother has double the num-
ber of asynchronous observations within a given time difference
from the analysis, and hence half the analysis error covariance.

This dependence on x can be expressed in terms of an “anal-
ysis information synchronicity” (or “synopticity” for meteorol-
ogists):

Ais = ∣∣∣∣B̂ H T R−1
k H

∣∣∣∣,

Fig. 2. Analysis information synchronicity for the random walk
analysed by: (a) the Kalman filter and (b) the Kalman smoother.
Contour interval 0.05, values greater than 0.5 shaded.

where R is the observation error covariance for observations at
a particular time and H the observing operator and ||·|| is a suit-
able norm.Ais is the ratio of the information input to the analysis
from the observations (HT R−1

k H ) to the total information con-
tent of the analysis (B̂−1). In the present example the analysis
information synchronicity is just the analysis error variance nor-
malised by the observational error variance. This is shown in
Fig. 2.

For the Kalman filter there is marked increase in the infor-
mation synchronicity as θ increases. For θ ≤ 0 the information
synchronicity falls to zero as the model skill increases (x → 0).
For unstable modes, on the other hand, the synchronous obser-
vation retains a finite weight even for a perfect model. Thus,
for log2(θ ) = 0.35 (θ ≈ 1.27) a perfect model will still produce
an analysis in which 50% of the information comes from the
synchronous observation.

For the Kalman smoother the sign of α is immaterial: unsta-
ble modes are treated with the same accuracy as damped modes.
This is a direct consequence of the time-symmetry of the analy-
sis algorithm: time reversal, which swaps unstable with damped
modes, has no impact on the accuracy of the result. Instability
in the system actually improves the ability of the analysis pro-
cess to bring in information from asynchronous observations.
The greater transfer of information from observations after the
analysis time more than compensates for the reduced transfer of
information from observations before the analysis time.

For instance, when θ = 1.2, x = 0.04, the error variance of
the Kalman filter is more than five times that of the Kalman
smoother.
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174 M. JUCKES AND B. LAWRENCE

4. Imperfect noise statistics and model errors

The results presented above have assumed that we have a perfect
representation of the deterministic component of the model and
perfect knowledge of the model error statistics. In real-life appli-
cations, we have to deal with imperfections in the deterministic
model (e.g. incorrect specification of θ ) and limited information
about the noise statistics (here σ m). In this case the calculations
of the previous section, which predict the accuracy of the analy-
sis on the assumption that these input parameters are well known,
may not be meaningful. Here we repeat the analysis, taking into
account imperfections in the input parameters. Suppose that �

and σ m are not accurately known, and instead we have to use an
estimate �† and σ †

m :

u∗(t + �t) = θu∗(t) + �†,

where u∗(t) is now a suboptimal estimate of u(t). The analysis
in this simple example depends on σ m and σ o only through the
ratio σ m/σ o. That is, if both σ m and σ o are doubled, the analysis
is completely unchanged. An overestimate of σ m is equivalent
to an underestimate of σ o.

4.1. Inaccurate model noise variance

The Kalman filter and smoother equations in Appendix B give
an estimate of the analysis error which depends only on the
estimated system model and error statistics. Let the error covari-
ance calculated by the analysis algorithm using the inaccurate
inputs be B̂†. This estimate will not, generally, equal the actual
error variance of the associated analysis. Let the actual error

variance be B̂∗ def= E[(u∗
a − u)2], where ua is the analysis. In the

present case, we know the true model equations, so we can cal-
culate how the true error evolves. The calculation is given in
detail in Appendix C. The change in the actual error covariance,

δ B̂ f
def= B̂∗

f − B̂ f , can be related to the error in the estimated
optimal error covariance. Applying eq. (C6)

δ B̂ f =
(
B̂†

f − B̂ f
)2 (

σ 2
o − B̂ f

)
σ 4

o

[(
B f B̂−1

f

)2 − θ 2
] , (10)

where B without the hat (ˆ) is the forecast error covariance
(eq. B1b, Appendix B). Subscripts and superscripts are as for
B̂, so B†

f is the Kalman filter forecast error estimate. The in-
crease in the actual error covariance varies as the square of the
error in the estimated optimal error covariance. For example,
using an underestimate of σ m will result in an underestimate of
the analysis error variance (δB†

f < 0). Conversely, an overesti-

mate of σ m will give δB†
f > 0. In both cases the analysis will be

suboptimal (as any incorrectly specified parameters reduce the
accuracy of the analysis).

A sensitivity which is relevant for near-optimal condition can
be calculated:

∂2 B̂ f

∂
(
σ
†
m

2)2
= ∂2 B̂ f

∂
(
B̂†

f

)2

(
∂ B̂†

f

∂
(
σ
†
m

2)
)2

, (11)

where, from eq. (10)

∂2 B̂ f

∂
(
B̂†

f

)2 = 2
(
σ 2

o − B̂ f
)

σ 4
o

[(
B f B̂−1

f

)2 − θ 2
] ,

and, from eq. (7a)

∂ B̂†
f

∂
(
σ
†
m

2) = 1

2θ

(
μ√

μ2 − 4
− 1

)
.

Putting these together and rescaling to give a non-dimensional
sensitivity

S f ≡ σ 4
m

B̂ f

∂2 B̂ f

∂
(
σ
†
m

2)2

= x2(μ −
√

μ2 − 4)4

4θ 4(μ2 − 4)3/2(
√

μ2 − 4 − θ + θ−1 − x)
. (12)

Figure 3 plots the right-hand side of eq. (12) and the corre-
sponding results for the reverse filter and the Kalman smoother.
A typical value of around 0.2 implies that a 50% error in σ 2

m

will increase the analysis error by only 5%. The sensitivity of
the Kalman filter error becomes very small for θ > 1 because
the analysis is dominated by the observations in that case.

4.2. Model bias

In real applications, we also expect there to be errors and prag-
matic approximations in the deterministic components of our
predictive model.

Fig. 3. As in Fig. 1, except showing sensitivity of error variance to
inaccurate process model error statistics, as defined in eq. (12),
evaluated at x = 0.04.
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DATA ASSIMILATION FOR REANALYSES 175

We can estimate the impact of such shortcomings by look-

ing at the impact of a bias in the model: δ�
def= �† − �. Using

eq. (C8) from Appendix C, the bias in the analysis generated by
an error in specification of � is given by

b̂ f = 1

2θ

(√
μ + 2

μ − 2
− 1

)
δ�, (13a)

b̂b = − θ

2

(√
μ + 2

μ − 2
− 1

)
δ�, (13b)

b̂s = 1

2(μ − 2)

(√
μ − 2

μ + 2
+ 1

)(
1

θ
− θ

)
δ�. (13c)

These functions are plotted for x = 0.04, δ� = 1, in Fig. 4.
The Kalman filter and backward Kalman filter show maximum
bias amplitudes near θ = 0, that is, for nearly neutral modes. The
Kalman filter bias tends to zero for large θ , but this is merely
a reflection of the fact that in this limit the model is given little
weight and the analysis is dominated by the observation.

The bias in the backward filter has the opposite sign to that of
the forward filter. The Kalman smoother bias is a weighted mean
of forward and backward biases. Here it vanishes identically for
neutral modes (θ = 0).

The influence of bias on neutral, or near-neutral modes, be-
comes most severe when the random error of the model is small.
For σ m 	 σ o, the bias of the Kalman filter at θ = 0 approaches

b̂ f (0) ≈ δ�σo

σm
.

This shows that a decrease in model random error can lead to
an increase in analysis bias. The maximum bias in the Kalman
smoother in this limit occurs for slightly non-neutral modes,
with θ ≈ 1 ± √

x . The corresponding bias is half that given by

Fig. 4. As in Fig. 1, except showing bias induced by process model
bias, normalised by the latter.

Fig. 5. As in Fig. 4, except showing bias induced by observational
bias, normalised by the the latter.

the Kalman filter:

max[b̂s] ≈ δ�σo

2σm
. (14)

The bias is more of a problem when the model is skillful
(x small) because in this situation the analysis relies heavily on
the model. In the small x limit the random error variance for near-
neutral modes is σ mσ o. Comparison with the above expression
for the bias shows that the bias dominates over the random error
when

δ�2 ≥ σ 3
m

σo
.

Thus, if δ� and σm are both much less than σo and δ� is
of comparable or greater magnitude than σm , the analysis bias
will be comparable to or greater than the observational error,
no matter how small δ� and σm are. This statement applies to
analyses carried out using an accurate estimate of the random
model error variance: σ †

m = σm . The amplitude of the bias in the
analysis can be reduced by using an artificially large value of
σ †

m , but this will increase the random component of the error. In
the small σ †

m/σ o limit the total error variance is given by

Etot = δ�2σ 2
o

4σ
†
m

2 + σ 2
mσo

2σ
†
m

+ σ †
mσo

2
, (15)

where the first term on the right-hand side is the squared bias
and the second and third are derived by solving equation (C5) at
θ = 1.

If δ� and σm are of comparable size and both much smaller
than σ o, then E tot of eq. (C5) is minimised by

σ †
m = δ�2/3σ 1/3

o

and the error variance is approximately

Etot = 3

4
(δ�)2/3 σ 4/3

o 	 σ 2
o .
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176 M. JUCKES AND B. LAWRENCE

This shows that a useful analysis can be obtained from a biased
model provided the appropriate equivalent noise is used. For a
skilful model this equivalent noise could be much larger than the
square of the bias amplitude. This also means that tuning σ †

m in
order to minimise E tot will not necessarily lead to a reasonable
estimate of σm .

4.3. Observational bias

The impact of a bias δy in the observations is given by

b̂ f k = 1

2

[
1 + θ−1 + (1 − θ−1)

√
μ + 2

μ − 2

]
δy, (16a)

b̂bk = 1

2

[
1 + θ + (1 − θ )

√
μ + 2

μ − 2

]
δy, (16b)

b̂sk ≡ 1. (16c)

For neutral modes the bias in the observations is simply re-
flected in the analysis without any modification. For unstable
modes, however, the Kalman filter amplifies the observational
bias. False information fed into the analysis is amplified by the
instability of the mode, so that the analysis is degraded relative
to the observations. For damped modes the bias is also damped.
In this case the relaxation towards zero reduces the impact of
false information in the observation.

The Kalman smoother always carries the observational bias
into the analysis without modification. The identity (16c), show-
ing that the Kalman smoother reflects the observational bias un-
changed in the present system, results from cancellation among
a large number of complex algebraic terms in the formualtion
used here. It can be derived more directly using an alternative,
variational, formulation of the problem.

5. Discussion

A simple system has been used to illustrate the difference be-
tween real-time and retrospective analyses. The simple system
is capable of representing damped, neutral and growing modes.
The greatest difference between the real-time and retrospec-
tive analyses is, not surprisingly, found when the system rep-
resents unstable modes. In this case the retrospective analysis
error variance was reduced to zero as the model error variance
was reduced to zero (i.e. as the quality of the assimilation model
improved). In the real-time analysis, on the other hand, there
remains a finite analysis error even when a perfect model is
used.

In the case of a stable system with neutral modes, sparse ob-
servations lead to little difference between the real-time and ret-
rospective analyses, but as the data input increases, the analysis
at any given time is dominated by information carried from other

times by the model: for an analysis time in the middle of the avail-
able data, the retrospective analysis error variance tends towards
half that of the real-time analysis.

An examination of the effects of model bias in this system
shows that, as expected, it can lead to a severe degradation of
both real-time and retrospective analyses. The degradation can
be mitigated by boosting the assumed variance of the model
random error. The amplitude which gives the best results depends
not only on the model bias but also on the relationship between
the model random and observational errors. Thus, depending on
the latter, the amplitude correction may be either much larger or
much smaller than the squared bias amplitude.

Observational bias in unstable modes is amplified by the
Kalman filter.

In the context of current operational data assimilation sys-
tems these results may appear to be of purely theoretical interest
because of the apparently insurmountable obstacle presented by
the huge computational cost of applying the Kalman smoother to
large systems (scaling as the cube of the number of control vari-
ables). The Kalman smoother algorithm for finding the optimal
solution is not, however, the most efficient for large systems. The
generalised inversion method (Bennett, 1992) derives the same
optimal solution (apart from differences in finite difference ap-
proximations which might be associated with the different algo-
rithms) at a cost proportional to the product of the total number
of control variables and the total number of observations in a
time period. This method has been applied to systems for which
the Kalman smoother algorithm would be prohibitively expen-
sive. Recent work (Juckes, 2005) deploys a new method which
solves for the optimal solution defined by the Kalman smoother
at a much reduced cost. In that case the cost grows only linearly
with system size for large systems.

Section 4.2 shows that empirical estimates of model error
determined by minimising the analysis error need to be treated
with caution: they do not necessarily have a simple relation to
the actual model error if the bias is a significant factor.

While the results we present are only definitively applied to
linear systems, they are indicative of what one might expect in
non-linear systems, and so their implications for reanalysis work
and analysis archives are important. If a good estimate of the flow
is available and the difference between the analysis and the esti-
mate is small, it may be that the assimilation problem is close to
being linear even when the underlying behaviour of the system
is non-linear. Tremolet (2004) suggests that this may be the case
for the ECMWF analysis system. If linearity gives a reasonable
approximation, so that a system of arbitrary complexity can be
built up from a superposition of many modes, then results such
as those presented here are of relevance. Even then, however, a
multimode system has the additional complexity that observa-
tions will not generally be of the individual modes but of linear
combinations of the modes, so that the errors associated with the
modes interact even when the modes themselves are physically
independent.
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Given algorithms exist which provide (affordable) solutions
consistent with those obtained with the Kalman smoother for
some classes of analysis problems, then this paper demonstrates
that using them could provide significantly better estimates of
the state of those systems.

6. Appendix A: Analytic integration of the
noise-driven linear differential equation

Analytic integration of the unforced equation is trivial: this ap-
pendix shows how to extend the calculation to include the random
term. Equation (1) can then be integrated, without approxima-
tion, to give

u(t + dt) = u(t) exp(−αdt) − γ

α
[1 − exp(−αdt)] + W ,

where the random component is

W =
∫ dt

0
W (t + τ ) exp [−α(dt − τ )] dτ.

The variance of W now needs to be determined.
It follows from the definition of the Wiener processes W that

E[(W )2] = E
[∫ dt

0

∫ dt

0
ς2W (t + τ )W (t + τ ′)

× exp[−α(2 dt − τ − τ ′)] dτ dτ ′]

=
∫ dt

0
ς 2 exp[−2α(dt − τ )] dτ

= ς2 (1 − exp[−2αdt])
2α

. (A1)

For small α dt this reduces to

E[(W )2] ≈ ς2 dt (1 + αdt) ≈ ς2 dt .

7. Appendix B: The Kalman filter and smoother

The Kalman filter equations (e. g. Rogers, 2000) are as follows:

x f k = Px̂ f k−1 (B1a)

B f k = P B̂ f k−1 PT + P1/2 Qk P1/2 T (B1b)

x̂ f k = x f k + K (yk − H x f k) (B1c)

B̂ f k = (I − K H ) B f k (B1d)

K = B f k H T (
H B f k H T + Rk

)−1
(B1e)

Subscripts f , b and s will be used to indicate the Kalman filter,
backward filter and smoother, respectively. A subscript k, k ± 1
will be used to label the time interval. Following standard nota-
tion, Q is the noise covariance matrix, H the observation operator

and R the observation error covariance. B will be the analysis er-
ror covariance. The state estimate x and error covariance B at
any time level are written with a .̂ if they include observations
from the current time level, otherwise these quantities refer to
estimates which do not use the current observations. A T super-
script indicates a transpose.

The k subscript is omitted from H and K because for these
operators the time is clear from the terms they are associated
with. An algebraically more simple form of (B1c, d) is

B̂−1
∗k x̂∗k = B−1

∗k x∗k + H T R−1
k yk, (B2a)

B̂−1
∗k = B−1

∗k + H T R−1
k H , (B2b)

where the ∗ in the subscript can be f , b or s. (B1c, d) are preferred
in numerical applications if the rank of R is less than the rank
of B. The set (B1) avoids inversion of B, which is an enormous
saving in many instances. Appendix C will, however, use the
algebraically simpler form (B1b).

Similar equations apply for the backward filter, simply replac-
ing P with P−1, and appropriate changes in indexing:

xbk = P−1 x̂bk+1, (B3a)

Bbk = P−1 B̂bk+1 P−1T + P−1/2 Qk+1 P−1/2T
, (B3b)

along with the general expressions in equation (B2).
The Kalman smoother is then

x̂sk = B̂sk
(
B−1

f k x f k + B−1
bk xbk + H T R−1

k yk
)
, (B4a)

B̂−1
sk = B−1

f k + B−1
bk + H T R−1

k H . (B4b)

8. Appendix C: Error evolution with imperfect
models and error statistics

8.1. C.1 random error

If the deterministic model is not correct there will be both a
random and a deterministic component of the analysis error. We
first look at the random component.

Let B†
f and B̂†

f be the estimated error covariances produced
by equations (B1) using estimated, rather than perfectly known,
input error statistics and model parameters. That is, they obey
versions of (B1b) and (B2b) with the correct model and covari-
ances replaced by estimates:

B†
f k = P† B̂†

f k−1 P
†T + P

† 1/2 Q†
k P

† 1/2 T , (C1)

(
B̂†

f k

)−1 = (
B†

f k

)−1 + H T R−1
k H . (C2)

Errors in H and R will not be considered here. The random
component of the error, B∗, then evolves according to

B∗
k+1 = P B̂∗

k PT + P1/2 Q P1/2 T , (C3)
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B̂∗
k+1 = B̂†

f B†
f
−1

B∗
k+1

(
B̂†

f B†
f
−1)T + B̂†

f H T R−1 H B̂†
f

T , (C4),

and hence

B†
f B̂†

f
−1 B̂∗

f

(
B†

f B̂†
f
−1

)T − P B̂∗
f PT

= P1/2 Q P1/2 T + B†
f H T R−1 H B†

f
T
. (C5)

It can easily be verified from eqs. (B1) that the optimal error
covariances B, B̂ satisfy (C5) with ∗ and † superscripts removed.
If the equation so obtained for the optimal solution is subtracted
from (C5), then an equation for the difference between the actual
and the optimal error covariance as a function of the difference
between the estimated and the optimal errors is obtained:(
I + B f H T R−1 H

)(
B̂∗

f − B̂ f
)(

I + B f H T R−1 H
)T

−P
(
B̂∗

f − B̂ f
)
PT ≈(

B†
f − B

)
H T R−1 H

(
I − B̂ f H T R−1 H

)(
B†

f − B
)T

,
(C6),

where terms in which B†
f − Bf multiplies B̂∗

f − B̂ f have been

neglected. This approximation will be valid when B†
f − Bf is

small.
The difference terms on the right-hand side, B†

f − B and its
adjoint vary linearly with changes in σ †

m when the perturbation
from σ m is small. This shows that the actual error variance varies
quadratically with the perturbation:

B̂∗
s − B̂s = B̂s

[
B̂−1

f

(
B∗

f − B f
)
B̂−1

f + B̂−1
b

(
B∗

b − Bb
)
B̂−1

b

]
B̂s

+ (
B̂†

s B̂†
f

−1 − B̂s B̂−1
f

)
B̂ f

(
B̂†

s B̂†
f

−1 − B̂s B̂−1
f

)T

+ (
B̂†

s B̂†
b

−1 − B̂s B̂−1
b

)
B̂b

(
B̂†

s B̂†
b

−1 − B̂s B̂−1
b

)T

+ (
B̂†

s − B̂s
)
H T R−1 H

(
B̂†

s − B̂s
)T

.

This gives a combination of the errors in the forward and back-
ward components and an additional error due to the inaccurate
combination of the two.

8.2. C.2 bias

Since the equation system is linear, the bias evolves indepen-
dently of the solution and the random error. The amplitude of
the bias in the solution results from the competition between the
generation of bias by the forward model and the removal of bias
by the addition of unbiased observations:

b f k+1 = Pb̂ f k + δ�, (C7a)

b̂ f k+1 = B̂ f B−1
f b f k+1 + K δy. (C7b)

If b̂ f k+1 = b̂ f k ≡ b̂ f then

b̂ f = (
1 − B̂ f B−1

f P
)−1(

B̂ f B−1
f δ� + K δy

)
, (C8a)

b̂b = (
1 − B̂b B−1

b P−1
)−1( − B̂b B−1

b δ� + K δy
)
, (C8b)

b̂s = B̂s
(
B̂−1

f b̂ f + B̂−1
b b̂b − R−1δy

)
. (C8c)
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