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Abstract— The complexity of current and emerging high
performance architectures provides users with options about
how best to use the available resources, but makes predicting
performance challenging. In this work a benchmark-driven
performance modelling approach is outlined that is appro-
priate for modern multicore architectures. The approach is
demonstrated by constructing a model of a simple shallow
water code on a Cray XE6 system, from application-specific
benchmarks that illustrate precisely how architectural char-
acteristics impact performance. The model is found to recre-
ate observed scaling behaviour up to 16K cores, and used
to predict optimal rank-core affinity strategies, exemplifying
the type of problem such a model can be used for.
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1. Introduction
Climate modelling is one of the grand challenge problems

of current times. To gain a greater understanding of the
climate system, scientists are adding complexity to their
models through increased resolution, modelling of additional
physical processes, and increasing numbers of ensemble
experiments to quantify uncertainty, all requiring vast com-
putational resources [1]. Thus climate modelling is one of
the application areas making use of the top high performance
systems across the globe, and to make best use of these
expensive resources means adapting to the new architectures
that are emerging.

Current supercomputing trends are for multicore pro-
cessors and the use of co-processor accelerators, both of
which have lead to increased levels of heterogeneity within
high performance systems. Apart from the different types
of processor that might coexist, for example CPUs and
GPUs, modern multicore architectures often have several
hierarchies inherent within the system. For the processor
this may include cache-sharing, non-uniform memory access
times and floating point unit sharing as with the AMD
Bulldozer [2], and for the network this may be due to
full connectivity between groups of nodes and then point
to point connections between the groups, as in the IBM
Power 7 Host Fabric Interface (HFI). This means that the

user has many choices about how best to use the system in
order to maximise floating point throughput and minimise
data transfer costs. For example, it has been found that
under-populating nodes, altering the domain decomposition
or changing the rank-core affinity can all alter performance
[3], [4], [5].

Currently, finding the best way to run an application on
a given architecture, especially for highly complex scientific
code such as the UK Met Office climate model, is often
a lengthy process of trial and error [4]. Recent work has
been done with automated optimisation techniques, such
as simulated annealing, to guide the search for optimal
performance tuning parameter values [6].

In this paper, we introduce a benchmark-driven predictive
modelling approach that allows the rapid evaluation of
different deployment choices, without the execution of costly
full-model runs. The model is based on commonly used ana-
lytical modelling techniques, but driven solely by data from a
series of application-specific benchmarks designed to capture
the effects of various resource sharing scenarios. The use of
benchmark data over analytical models of the architecture
leads to a shorter model development cycle. Since both the
application and architecture are complex, building accurate
performance models may be time-consuming, and in many
cases, unnecessary. Often it is sufficient to know that one
choice performs better than another. The method is outlined
in Section 3.

The approach is demonstrated on a complex modern
architecture, the Cray XE6, that exhibits many of the hetero-
geneous features mentioned. A simple shallow water code is
chosen as it displays one of the main patterns of behaviour
seen in atmosphere and ocean models: the calculation of
regular grids of data using a finite difference scheme requir-
ing periodic boundary exchanges. The code uses an MPI
parallelisation and straightforward rectangular 2-dimensional
domain decomposition. The simplicity of the application
means that effort can be focused on understanding the
complexity of the architecture. The methodology could,
however, be extended to explore application issues, such as
parallelisation strategies and communication patterns.

The resulting model is described in Section 4 and used to
predict run times for a series of scaling experiments. These



predictions are then evaluated against measured results to
quantify the model accuracy. The usefulness of the model is
tested by exploring rank-core affinity strategies in Section 5.
It is known that assigning approximately square domains to
each rank minimises costly off-node communications [7],
and this is reproduced by the model and confirmed by
measured results.

2. Performance modelling
A performance model combines information about an ap-

plication and underlying architecture to make an estimation
of the expected wallclock run time. The application part
of the model describes the amount and type of work that
needs to be performed, at any granularity from subroutines
to low-level operations, and the machine part supplies the
times to complete each portion of work, which may be from
benchmark measurements or a mathematical representation
of features of the hardware. Typically for a scientific ap-
plication, the work to be performed can be split into two
broad categories: i) computations, the bulk of which will be
loops of floating point calculations, and ii) communications,
the MPI operations that transfer data between ranks. This
requires machine models of the processor and network
respectively.

There are many different means of building performance
models [8]. Logically the process begins with the creation of
the application model, which can be done automatically by a
tool, or written by hand with expert knowledge and analysis
of the code, each of which are discussed in the following
sections.

2.1 Automated methods
Application models can be generated automatically by

profiling tools which log the operations a program performs
as it executes. The resulting trace file can then be replayed
by a machine simulator which has the ability to emulate a
different architecture to the one on which the application was
originally run. An example of this is the PMaC prediction
framework described by Snavely et al [9] and Carrington,
Snavely and Walter [10]. The process cannot however predict
changes to the number of processors or other application
inputs. A similar but more flexible method (the WARPP
toolkit) is described by Hammond et al [11].

Although automated tools require minimal human effort
and limited knowledge of the code, fundamentally the code
must exist and be executable. Often it is treated as a black
box, therefore such methods are limited in their ability to ex-
plore deployment choices, as this involves parameterisation
in terms of application inputs such as problem size.

2.2 Analytical methods
Analytical application models are generally constructed

by hand, based on an abstract view of the program code.

Typically for scientific applications, the processor and net-
work are modelled with a mixture of analytical and empirical
techniques. Performance models have been developed in this
way for many applications including, in the climate science
domain, the POP ocean code (Kerbyson and Jones [12]),
HYCOM ocean code (Barker and Kerbyson [13]) and WRF
weather prediction code (Kerbyson et al [14]). A systematic
description is given by Hoefler et al [15]. First, the applica-
tion input parameters, code kernels, communication patterns,
and any overlap with computations are identified. These are
used to compose the analytical application model. Next,
empirical steps are taken to provide run times for the model.
For computations, an expression of the sequential time for
each of the kernels is derived by measuring the code for
different problem sizes. Communication times are expressed
as a LogGP model of point-to-point messages [16], with the
parameters derived from benchmark experiments [17].

One of the main criticisms of detailed analytical applica-
tion models is the human effort required to build them. Ulti-
mately, the purpose of the modelling procedure should be to
improve performance by aiding understanding, highlighting
areas for optimisation, informing the tuning process and so
forth. For these purposes a fully accurate model may not
be required, and so automatic tool-based methods or simple
coarse analytical models may be preferred. An example of
this is the work of Dennis, Jessup and Waite [18] who use a
prototyping tool (SLAMM) to compare the memory usage of
several algorithmic implementations within POP. Although
far more simplistic than the Kerbyson and Jones model [12],
theirs is sufficient to substantially optimise the code.

3. Benchmark-driven modelling
approach

Here we propose an updated analytical and empirical
modelling approach that is suited to a complex and hetero-
geneous architecture such as the Cray XE6. There are three
main differences to the methodology described by Hoefler
et al [15].

Firstly, for modern architectures simple models of data
transfers can become highly complicated. The number of
parameters involved can quickly rise with the different
communication protocols in use (large and small messages),
links along which data can travel (on-node and off-node) and
contention due to multiple cores per node accessing the same
network interface. This can be seen in the work of Mudalige,
Vernon and Jarvis [19] for a Cray XT4 system which is
somewhat more simplistic than the Cary XE6 considered
here. Since collecting benchmark data is a necessary part
of the creation of these models, we propose skipping the
modelling phase and simply interpolating from the data.

Secondly, part of the time spent in MPI transfers includes
accessing the data from it’s location in cache or memory.
Although packing the data into a buffer may be done as



a separate stage, Fortran 90 compilers are able to do this
automatically, even with non-contiguous subsections of data.
For data stored as a 2-dimensional array, retrieving sub-
sections in one of the directions will lead to non-contiguous
accesses. In this benchmarking approach, both contiguous
and non-contiguous accesses are included in the transfer
time, without having to be explicitly modelled.

Thirdly, it is insufficient to provide only the sequential
computation time, as the model needs to account for the
effects of resource-sharing such as multiple cores accessing
the same cache. Therefore here, multiple benchmarks are run
to account for each of these cases.

As in Hoefler et al [15] the first steps of this approach
are to express the application analytically in terms of code
kernels and communication patterns. The empirical steps,
however, involve an additional stage which is to identify
the resource sharing scenarios to be measured. Compute
benchmarks are based on an instrumented version of the
application. The communications benchmarks are bespoke
versions of standard tools. Data from the benchmarks are
then organised in a database which is accessed by a deploy-
ment model. This translates a given runtime scenario into
a performance prediction interpolating from the measured
results as necessary. Assuming applications follow the shared
memory program multiple data (SPMD) paradigm, all cores
execute the same code but over different data domains. Here
it is also assumed that all cores are synchronised, thus only
the maximum time per core is needed.

4. Performance model of a shallow water
code

Using the benchmark-driven approach described, a model
is constructed for a version of the NCAR shallow water
code [20], [21] on the HECToR supercomputer, a Cray
XE6 system based at the University of Edinburgh [22].
The following sections describe the shallow code (Section
4.1) and HECToR system (Section 4.2), after which the
performance model is outlined (Section 4.3) and evaluated
(Section 4.4).

4.1 The NCAR shallow water code
The NCAR shallow water code (herein ’shallow’) uses a

second-order finite-difference solver to evaluate the shallow
water equations. Calculations are performed over a rect-
angular domain of sizeM by N with periodic boundary
conditions in both directions to replicate the behaviour on
a sphere whilst avoiding the use of poles. The version of
shallow used here is a Fortran 90 implementation with a 2-d
parallel domain decomposition. Local domains are sizedm
by n with arrays dimensioned asm + 1 by n + 1 to allow
for a single halo row and column. There are 13 local array
fields and at each timestep the code performs 10 array update
loops, 3 array copies, and 7 exchanges of halo data.

Halo exchanges update the values at boundary cells from
the domains held by neighbouring ranks, and in this version
these are implemented withMPI_Sendrecv operations. As
shallow uses double-precision real numbers, the total data
volume sent and received each halo update will be(m +
n + 2) × 8 bytes. This data volume only depends on the
local data size and will not vary with the global data size
or total number of ranks. Thus, under ideal conditions the
wallclock communication time should remain constant for
the same local array size (weak scaling). In reality however,
the physical mapping of ranks to cores will affect the run
time and, as the total size of the communicator increases,
interference and load imbalance may increase.

As well as the transfer time between cores, additional time
will be spent on overheads associated with initialising the
exchange and loading the data from its location in cache or
memory. Since the data is stored in 2-dimensional arrays,
halos sent in theM -direction will require loadingn + 1
cachelines as the data in this dimension will be held non-
contiguously in memory. Conversely, the halos in theN -
direction will require only(m+1)/8 cachelines as this data
will be contiguous.

4.2 HECToR
HECToR is the national UK supercomputing facility based

at the University of Edinburgh and funded by the UK
research councils. It is currently in Phase 3 of its lifespan
which is a Cray XE6 system, consisting of 2816 compute
nodes for a total of 90,112 cores.

Each compute node on HECToR comprises two sixteen-
core AMD Opteron Interlagos chips, part of the Bulldozer
family. The Interlagos chips are made up of two 8-core dies,
each directly connected to their own 8 GB memory and
consisting of four ’compute modules’. A module contains
two integer cores that share a single floating point execution
unit and 2 MB of L2 cache. Additionally, integer cores have
their own 16 KB L1 data cache and all cores on the die
share 6 MB of L3 cache with an extra 2 MB given over to
maintaining cache coherency. Caches in the AMD Opteron
series are exclusive with lower levels acting as victim caches
for the higher levels. Cores operate at a frequency of 2.3 GHz
and are capable of processing 8 double precision floating
point operations per cycle. The nature of the shared floating
point unit means that codes can obtain double the cache and
memory space per task by running with only one of the
integer cores and still have access to the full floating point
capability. Diagrams representing the hardware can be found
on the HECToR website [23].

All four dies on a node are connected to each other via
HyperTransport (HT) links forming a non-uniform memory
access (NUMA) node meaning that all dies can access the
total 32 GB of memory. The links between dies vary, with
24-bits between dies on the same chip, 16 bits between
opposite dies, and 8-bits between diagonally opposite dies.



In addition, each node has a single link to a Gemini Network
Interface Controller (NIC) that connects nodes into a 3-
dimensional torus [24].

4.3 Performance model
From the information in Sections 4.1 and 4.2, a perfor-

mance model of shallow can be constructed. The application
model consists of a series of identical timesteps, each
comprising i) some volume of floating point compute work
dependent on the local array size, and ii) several halo-
exchanges with a single row and column transferred per
rank. Array copies are not considered, as they only account
for around 10% of the runtime. If needed they could be
benchmarked in a similar way to the compute loops. The
next step is to design and run the benchmark experiments
to generate data with which to populate the model. The
computation and communication models are described in the
following sections.

Computation model

To benchmark the computations, an instrumented version
of shallow is run over a set of 23 problem sizes ranging from
L1 resident to memory resident. Timers are inserted around
each block of compute loops with an MPI barrier before
the timer call so that all cores are synchronised. This means
that times are consistent from run to run with full resource
sharing. In real application runs however, it is unlikely
that cores would be synchronised, leading to less resource-
sharing (increasing performance), but also more waiting time
in the halo exchanges (decreasing performance).

The benchmark is run over a variety of cases that illustrate
each resource-sharing scenario. These are: i) core pair mode,
where only one of the integer cores in each module is in
use, with no floating-point unit or L2 cache sharing, and ii)
compact mode, where both integer cores are used, causing
floating point and L2 cache sharing. Both cases are measured
on a single die, with one to four modules to account for L3
cache sharing as well. In reality, the achieved performance
may be reduced slightly by communication overheads, al-
though this may be offset by increased performance due to
the lack of interruption by timer and barrier calls.

Each experiment is repeated a total of 5 times to provide
a mean flop rate, with the number of flops taken from the
source code. The benchmark results are shown in Figure
1, with features of the architecture clearly identifiable. The
per-core performance drops when both integer cores are in
use, from a peak of 3.3 GF to 2.6 GF. This does, however,
increase the per-module performance to 5.2 GF, showing
the benefits of two feeds to the floating point pipelines.
Performance differs little with the number of modules when
the problem size fits in each module’s L2 cache, with only
a slight degradation when all modules are in use. As the
problem size increases further, the performance decreases
for each additional module due to contention for L3 cache,

memory bandwidth and the translation lookaside buffer
(TLB).
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Fig. 1: Computational performance per core as measured
by benchmark experiments. The local data size is based on
storing 13 array fields.

Communication model

A bespoke benchmark code is used to measure the halo-
exchanges. It is based on the Intel MPI Benchmarks (IMB)
[25], but with greater control over the pairs of cores to
transfer between, contiguous and non-contiguous memory
access and location of data in cache or memory.

The benchmark takes as input a series of message lengths
spaced roughly exponentially, with extra values around the
boundaries between different MPI message protocols (for
small and large messages). To ensure messages are accessed
from the correct cache level, the benchmark takes two other
inputs: the size of the cache to operate from (’the operating
cache’), and the total size of all caches that are closer to the
core (’the higher cache’). Message buffers are taken from an
array of size roughly equal to the size of the operating cache.
This is initially loaded into the processor, then pushed into
the operating cache by loading a dummy array which is the
same size as the higher cache. Several message transfers are
performed and a mean value taken to reduce timer overhead
and effects of timer granularity. To ensure that each message
is actually taken from the operating cache, a different slice



of the buffer is extracted each time, similar to the approach
taken by the IMB. In this way both contiguous messages and
non-contiguous messages are measured. It should be noted
that these memory assumptions do not account for copies of
data made by subroutines or held in MPI buffers, therefore
data may be located further from the processor. The same
assumptions are made for the application code, although the
benchmark does not replicate all behaviour. Furthermore, as
the benchmark performs multiple consecutive communica-
tions, any overheads associated with initialising MPI buffers
will be lost, whereas in the application these costs may be
more significant.

Experiments are performed over all types of connection
along which data may be transferred. On the XE6, these
can be categorised as between i) cores on the same module
(shared L2 cache), ii) cores on the same die (shared L3
cache), iii) dies on a node (HT links), or iv) nodes in
the torus (Gemini interconnect). To minimise complexity,
means are taken over the different bandwidths between
dies on a node and different numbers of hops between
two nodes on the torus. This can be justified since, unless
a very large communication volume is taking place, little
difference is observed in the achieved bandwidths between
dies. Furthermore, on the XE6 it is not known in advance
which group of nodes the scheduler will select, thus the
number of hops cannot be predicted. In most cases the
scheduler selected nodes on the same or neighbouring NICs,
yet frequently the nodes were as many as 13 hops away.

Along with the message lengths, cache usage, contiguous
and non-contiguous accesses and connections to measure, it
is also necessary to quantify the contention due to differ-
ent numbers of cores communicating along the same link
concurrently. Experiments are therefore run with 1 to 8
cores per die for transfers within and between dies, and
from 1 to 32 cores for transfers between nodes. Selected
results for off-node transfers and off-die transfers are shown
in Figure 2, showing the per-transfer slow down when
all cores communicate along the same link simultaneously.
Non-contiguous transfers achieve approximately a factor of
8 lower bandwidth than contiguous transfers (as expected),
and off-die transfers generally achieve a higher bandwidth
than off-node transfers, except where only a single core per
node is used.

4.4 Evaluation
The performance model of shallow combines the data

from the computation and communication benchmarks to
make a prediction about the total application runtime. The
model was evaluated by comparing predictions to measured
times for several examples. Three global problem sizes were
used initially:256× 256, 512× 512 and1024× 1024. Each
of these was run with 4, 8, 16 and 32 cores per node on
1 to 16 nodes, up to a total of 512 cores. It should be
noted that, up to 32 cores per node, only one integer core
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Fig. 2: Bandwidths as observed by halo-exchange bench-
marks. Off-node values are means over 10 runs with pairs
of nodes selected by the scheduler. Off-die values are means
of two runs over each pair of dies within a node.

per module is used to make best use of the floating point
units. These examples test how well the model captures the
interactions within a node. It is also useful to look at larger
problem sizes that scale out to thousands of cores. A second
set of examples therefore takes two larger problem sizes,
2048× 2048 and4096× 4096, and scales these out to 512
nodes with 16 or 32 cores per node, up to a total of 16,384
cores.

Model predictions and measured run times are shown
in Figure 3. Shallow runs were performed 5 times, with
the mean and two standard deviations either side shown,
which assumes a normal distribution of run times. The
modelled run times can be seen to accurately reproduce
the measured behaviour. Model errors are defined as the
difference between the predictions and mean run times for
each set of problem sizes and number of cores per node.
The median percentage errors, the form often quoted in the
literature, range from 0.8% to 25%. Up to 20% is generally
considered reasonable.

5. Rank-core mapping strategies
The usefulness of the model is further tested by pre-

dicting performance under various MPI rank to physical
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Fig. 3: Shallow model predictions of run time (dashed lines)versus measured times for a series of 5 runs, with the mean
(solid lines) and two standard deviations on either side of the mean (dotted lines).

core mapping strategies. On HECToR, the default “SMP-
style” mapping means that consecutive ranks fill nodes
one at a time. For shallow, this corresponds to rows (or
portions of a row) of the subdomain being mapped to each
node. Intuitively, for nearest-neighbour communicationsit
is better to assign rectangular subdomains to each node
in order to minimise the off-node data transfer volume.
Such a “custom” mapping can be generated automatically
on HECToR with thegrid_order tool. An alternative
mapping strategy, "round-robin", assigns subsequent ranks to
each different node in turn. For a small number of ranks this
leads to columns of the subdomain being assigned to each
node, however for large numbers of ranks each neighbour
will reside on a different node, maximising the off-node
transfer volume. These three options should produce distinct
performance behaviour, and this hypothesis was tested using
the predictive model and measured runs.

To test the hypothesis, the larger problem sizes from the
evaluation runs were used (2048 × 2048 and 4096 × 4096
up to 512 nodes). As the computational work per rank
remains the same, only the communication model is used.
Shallow runs were repeated 5 times as before to quantify the
variability in run time. Figure 4 shows the model predictions
and the mean measured run time and two standard deviations
either side. The model successfully predicts the order of
performance in all cases, although the run times themselves
are reproduced with varying degrees of accuracy. The custom
mapping shows least variability and the best prediction. This
is likely to be since it has the smalled volume of off-node
transfers which are affected by network traffic. For a real
climate model application the communication dependencies

are more complex than just nearest neighbour and so a
more sophisticated model would be required to evaluate the
optimal mapping.

6. Conclusion
In this paper we have presented a benchmark-driven

performance modelling approach, based on existing work
but designed specifically to quickly evaluate application
performance on complex architectures. Communication and
computation work are both expressed as functions of bench-
marked results rather than detailed analytical models, yet
predict performance well enough to replicate scaling be-
haviour and identify the best of three different rank-core
affinity strategies. The assumptions inherent to the model are
discussed, along with potential sources of error which will
be analysed further in upcoming work. In addition, similar
models of shallow will be constructed for the IBM Power 7
and BlueGene/Q systems which display substantially differ-
ent performance behaviour.

A similar approach to that defined here could also be
applied to more complex kernels of climate science ap-
plications, to aid directly in performance optimisation. In
such cases, the compute kernels may be larger, reducing
inaccuracies due to timer overheads, and the communication
may extend to other patterns beyond halo-exchanges.
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