

Provenance, metadata, and e-infrastructure to support climate science

Bryan Lawrence

Rutherford Appleton Laboratory

reporting the efforts of dozens of other folks in major international projects

including, but not limited to

CMIP5 (Taylor, Stoufer)

Metafor (Guilyardi), IS-ENES (Joussaume)

Earth System Grid, Earth System Curator

(Balaji, DeLuca, Foster, Middleton, Williams)

(none of whom were consulted about the content of this talk)

&

The Global Organisation for Earth System Science Portals, and the new Earth System Grid Federation

Outline

- The Climate Problem
 - Data Generating Infrastructure and the need for metadata
 - Evaluating Australia in CMIP3 Climate Models
 - Climate Model primer
 - The problem with understanding the differences between models and the simulations they produce.
- A Brief introduction to Metafor
- An introduction to the CMIP5 Information Ecosystem
 - Aims and objectives of CMIP5
 - Global problem: Global simulations simulated globally.
 - Global Deployment of information systems.
 - The Earth System Grid Federation.
 - Quality Control and Assessment in CMIP5 and ESGF
 - Bringing the information flow together
- A tour through the CMIP5 information implementation.
 - Access control in an open world.

Centre for Environmental Data Archival science and technology facilities council natural environment research council

Outline

- The Climate Problem
 - Data Generating Infrastructure and the need for metadata
 - Evaluating Australia in CMIP3 Climate Models
 - Climate Model primer
 - The problem with understanding the differences between models and the simulations they produce.
- A Brief introduction to Metafor
- An introduction to the CMIP5 Information Ecosystem
 - Aims and objectives of CMIP5
 - Global problem: Global simulations simulated globally.
 - Global Deployment of information syster
 - The Earth System Grid Federation.
 - Quality Control and Assessment in CMIF 2: Metadata Futures
 - Bringing the information flow together
- A tour through the CMIP5 information implem All to be on my blog http://home.badc.rl.ac.uk/lawrence/talks
 - Access control in an open world.

Centre for Environmental Data Archival science and technology facilities council natural environment research council

Talk 3 of 3:

- 1: Information Network interoperability
 - letadata Hutures
 - including more details of greater
 - role for RDF in the work discussed here)

Climate 101

... all seems rather simple doesn't it?

Nice consumable curves ...

Enough for mitigation policy perhaps, but enough for adaptation policy?

In the beginning: observations

All linked up, with global data distribution.

Images: from J. Lafeuille, 2006

World Meteorological Organisation have been doing e-infrastructure for years!

Centre for Environmental Data Archival science and technology facilities council

NERC Observatories and Sensor Networks

NERC Mobile Research Sensors

Old Weather/New Results

Cat Data	Acco	Data Dulas	Search	Community	neip	Datasat Index	
Gerbala	Acce	ss Rules		Submit D	ata	Dataset muex	

Index to catalogue ADM55

Back to main index

Log number	Ship name	Year	Date	Description
1 <u>(view</u> pages)	ADVENTURE [1]	1771	1771/Nov/28 1774/July/12	Log kept by Commander T Furneaux. Voyage of discovery and surveying: Pacific, Australia, America
2 <u>(view</u> pages)	ADVENTURE [2]	1789	1789/Oct/25 1790/May/30	Log kept by Lieutenant P N Inglefield. Pacific, Australia, America
3 <u>(view</u> pages)	ALEXANDER	1818	1818/Jan/15 1818/Nov/9	Journal kept by Captain W E Parry. A narrative account of voyage of discovery, North West Passage and Arctic
4 <u>(view</u> pages)	ALEXANDER	1818	1818//1819//	Remarks on Magnetism and Meteorology kept by Captain W E Parry during voyage of discovery of North West Passage and Arctic
5 <u>(view</u> pages)	ALEXANDER	1818	1818//1819//	Rates of Chronometer Days work etc kept by Captain W E Parry during voyage of discovery of North West Passage and Arctic
6 <u>(view</u> pages)	ASSISTANT	1791	1791/May/19 1793/Mar/5	Log kept by Commander N Portlock. Cape, Pacific, accompanying Captain Bligh in the Providence

Old Weather: Our Weather's Past, the Climate's Future

-10
☐ (Modern max & min over HMS Dorothea 1818 Brohan et al 2010)

Centre for Environmental Data Archival Science and technology facilities council

- •Using data collected under the umbrella of the Atmospheric Circulation Reconstructions of the Earth (ACRE) initiative
- •Assimilating (only) surface observations of synoptic pressure, monthly sea surface temperature and sea ice distribution to produce
- •Data available from Jan 1871 to 2008 from NOAA ESRL ... but:
- •1 GB/year/variable, 56 ensemble members (+mean and spread), 10 variables (there are more), 120 years = 70 TB ...

http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html

Centre for Environmental Data Archival science and technology facilities council

20th Century Reanalysis

•Neither of the last two examples would be possible without metadata

- Ship logbooks with location, time, along with measurements
- (Actually the measurements themselves were "metadata" for the ship logs.)
- Station data with information about location and calibration

• But both demonstrate problems with lack of metadata too:

- How were those ship measurements made, and with what accuracy?
- Did that station move, and if so, did anyone write it down (movements often lead to discontinuities in data records)

•Research data systems generate a wealth of information, usually recorded for a specific task.

- But that information, with sufficient information, can be repurposed, reinterpreted, and reused!

• But the sheer amount of data can overwhelm one's ability to reuse if one can't get at basic facts as to what was done, how, and why!

Science & Technology Facilities Council

> British Atmospheric Data Centre NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL

Science & Technology Facilities Council

The scalability of real metadata

Figure 6 — Minimum information necessary to describe the local scale environment of an urban station, consisting of (a) template to document local setting, (b) sketch map to situate the station in the larger urban region, and (c) an aerial photograph.

WMO/TD 1250 (2006) (pdf)

(Research instruments often don't bother with this level of info, to the detriment of reuse)

British Atmospheric Data Centre NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL EENTRE FOR ATMOSPHERIC SCIENCE Centre for Environmental Data Archival science and technology facilities council natural environment research council

... but even this sort of metadata can be invisible (and hence, useless), if it's not machine readable.

Humans can't deal with thousands of such things (at least not without crowd sourcing, and that only works for "interesting" tasks).

Metadata needs to be machine readable.

Humans and Big Data

A person working full time for a year has about 1500 hours to do something. Moore's Law wont change that.

(In the UK 220 working days a year is about standard. Let's remove about 20 days for courses, staff meetings etc ... so that leaves about 200 days or, for a working day of 7.5 hours, a working year of about 1500 hours.)

- What does a 50 TB dataset mean?
 - A single lat/lon map might be of order 50 Kb ... so we have of the order of 10 billion maps. So, if we look at each map for 10s, one individual could quality control those maps in, say, two thousand years of work! Bring on crowd sourcing ... (but not all problems are sexy)

We will never **look** at **all** our data.

We need to do automatic quality control on ingestion.

We **have** to provide tools so users can select what they want not download entire datasets

Tools need metadata!

• If it takes 2 minutes to find something, and have a quick look at it and, say, extract a parameter name, you can process 45,000 items a year, but no human could do that full time (repetitive boredom)! (Maybe 30K in two years?)

So, particularly with respect to observational data, we can't manually reprocess our files to create new information about the data we hold ... we have to automate ... **automation needs compliant metadata** ...

Storage costs going down; metadata costs going up!

Figure 10.12. Multi-model mean changes in (a) precipitation (mp day ¹), (b) sel moisture content (%), (c) runoff (mm day⁻¹) and (d) evaporation (mm day⁻¹). To indicate consistency in the sign of change, regions are stippled where at least 80% of models agree on the sign of the mean change. Changes are annual means for the SRES A1B scenario for the period 2080 to 2099 relative to 1980 to 1999. Soil moisture and runoff changes are shown at land points with valid data from at least 10 models. Details of the method and results for individual models can be found in the Supplementary Material for this chapter.

Spatial and temporal subsetting ... statistics over models ...

So why was Australia not stippled?

Interannual variability means that when our projections need to start in the right state (and capture that variability correctly too).

Model uncertainty means that we may not believe our model(s) (any or all) have the relevant resolution and/or physics to capture important regional processes.

Scenario uncertainty means that we are not sure of the impact of different economic and emission futures.

(Australia is unlucky, some regions more predictable than others, global mean much more predictable than any region)

So what were the salient differences between the models? (Forget looking at the code, these models have **millions** of lines of code each!)

40 50 Lead time (years from 2000)

...and deeper: CMIP3: What models did what?

Extreme Indices

Forcina

AR4: WG1 Table 10.4

time-independent land surface monthly-mean atmosphere daily-mean atmosphere

3-hourly atmosphere

time-independent ocean

Rows: Models, and their output types. Columns: Experiments and Projections (Three layers of complexity: models, experiments, output ... each of which is itself complex)

British Atmospheric Data Centre NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL

Primarily

Mathematical

Digression: What is a model?

Surface Winds Precipitation Reflection and Transmission Evaporation Transpiration **Atmosphere** Surface Temperature (not statistical) representation of a complex system of Circulation climate processes Surface Winds Precipitation Runoff **Reflection and Transmission** Nutrient Loading Surface Temperature Surface Temperature Evaporation Currents Currents Upwelling Ocean

Image: from J. Lafeuille, 2006

Answer: Lots of coupled partial differential equations solved via interative numerical techniques. Grid resolution controls whether equations really represent processes or parameterised verisions of them (which will have some statistical properties).

The World in Global Climate Models

FAR:1990 SAR:1995 TAR:2001 AR4:2007 AR5:2013

> British Atmospheric Data Centre National centre FOR Atmospheric science

AR4

Centre for Environmental Data Archival science and technology facilities council natural environment research council

State of the Art: Model Comparison

Table 1 The models used in the present study, including, configurations (near the equator) and number of years of simulations

Model	Institution	Atmosphere resolution	Ocean resolution	Length picntrl	Length lpctto2x	Length lpctto4x
CCSM3	NCAR (USA)	T85L26	1.125°×0.27°L40	230	150	n/a
CGCM3.1(147)	Meteo Esense (CNIP) ((Esense)	14/L31 T(2) 45	1.85°×1.85°L29	200	150	150
CNRM-CM3	CSLDO (Australia)	103L43 T63L19	2°×0.5°L51 1.975%-0.9491.21	390	100	110
CSIRO-MR3.0	CSIRO (Australia)	103L18 T(2L21	1.8/5*×0.84*L51	380	10	n/a
ECHAM5/MPI-OM	MPI-M (Germany)	103L31 T40L26	1.5°×0.5°L40	332	100	81
FGOALS-g1.0	LASG/IAP (China)	142L20	1°×1°L33	150	80	n/a
GFDL-CM2.0	GFDL (USA)	2.5°×2°L24	1°×0.33°L50	500	100	160
GFDL-CM2.1	GFDL (USA)	2.5°×2°L24	1°×0.33°L50	500	150	160
GISS-AOM	NASA/GISS (USA)	4°×3°L12	4°×3°L16	251	n/a	n/a
GISS-EH	NASA/GISS (USA)	5°×4°L20	2°×2°L16	500	80	150
GISS-ER	NASA/GISS (USA)	5°×4°L20	5°×4°L13	400	100	n/a
INM-CM3	INM (Russia)	5°×4°L21	2.5°×2°L33	330	n/a	n/a
IPSL-CM4	IPSL (France)	2.5°×3.75°L19	2°×0.5°L31	230	80	n/a
MIROC3.2(hires)	CCSR/NIES/FRCGC (Japan)	T106L56	0.28°×0.1875°L47	100	10	n/a
MIROC3.2(medres)	CCSR/NIES/FRCGC (Japan)	T42L20	1.4°×0.5°L43	500	100	150
MRI-CGM2.3.2	MRI (Japan)	T42L30	2.5°×0.5°L23	350	150	150
PCM	NCAR (USA)	T42L18	0.66°×0.5°L32	350	96	90
UKMO-HadCM3	HadleyCentre (UK)	3.75°×2.5°L19	1.25°×1.25°L20	341	10	n/a
UKMO-HadGEM1	HadleyCentre (UK)	1.875°×1.25°L38	1°×0.33°L40	80	10	n/a
SINTEX T30	IPSL/INGV (France, Italy)	T30L19	2°×0.5°L31	200	n/a	n/a
SINTEX T106	INGV/IPSL (Italy, France)	T106L19	2°×0.5°L31	100	n/a	n/a
SINTEX T106mod	IPSL/INGV (France, Italy)	T106L19	2°×0.5°L31	100	n/a	n/a
HadOPA	CGAM/IPSL (UK,France)	3.75°×2.5°L19	2°×0.5°L31	100	n/a	n/a

The only flux corrected model is MRI-CGM2.3.2

1: Tabulate some interesting property (and author grafts hard to get the information)

Guilyardi E. (2006): El Niño- mean state - seasonal cycle interactions in a multi-model ensemble. Clim. Dyn., 26:329-348, DOI: 10.1007/s00382-005-0084-6

State of the Art: Model Comparison

TABLE 2. Description of model parameterizations for stratiform (i.e., large scale) and convective precipitation.

TABLE 1. List of IPCC global coupled climate models analyzed in the present study and Model name Stratiform precipitation Convective precipitation Model resolution is characterized by the size of a horizontal grid on which model output was CCSM3, CCSM2 Prognostic condensate and precipitation Simplified Arakawa and Schubert (1974) (cumulus levels. Spectral models are also characterized by their spectral truncations. Equilibrium climat parameterization (Zhang et al. 2003) ensemble) scheme developed by Zhang and McFarlane (1995) Model label and CGCM3.1 Precipitation occurs whenever the local relative Zhang and McFarlane (1995) scheme Institution a climate sensitivity Resolution humidity is supersaturated CNRM-CM3 Statistical cloud scheme of Ricard and Rover (1993) Mass flux convection scheme with Kuo-type closure Canadian Centre for Climate Modelling CGCM3.1(T47) 3.6 K 96 × 48 L32 T47 CSIRO-Mk3.0 Stratiform cloud condensate scheme from Rotstavn Bulk mass flux convection scheme with stability-(http://www.cccma.ec.gc.ca/models/cgc (2000)dependent closure (Gregory and Rowntree 1990) CGCM3.1(T63) 3.4 K $128 \times 64 \text{ L}32 \text{ T}63$ Canadian Centre for Climate Modelling ECHAM5/MPI-OM Prognostic equations for the water phases, bulk Bulk mass flux scheme (Tiedtke 1989) with (http://www.cccma.ec.gc.ca/models/cgc cloud microphysics (Lohmann and Roeckner 1996) modifications for deep convection according to CNRM-CM3 n/a $128 \times 64 \text{ L}45 \text{ T}63$ Centre National de Recherche Météoro Nordeng (1994) manuscript submitted to Climate Dyn FGOALS-g1.0 Same as PCM Zhang and McFarlane (1995) scheme GFDL-CM2.0, Cloud microphysics from Rotstayn (2000) and Relaxed Arakawa-Schubert scheme from Moorthi ECHAM5/MPI-OM 3.4 K 192 × 96 L31 T63 Max-Planck-Institut für Meteorologie, (GFDL-CM2.1 and Suarez (1992) macrophysics from Tiedtke (1993) ECHO-G 3.2 K 96 × 48 L19 T30 Meteorological Institute of the Universi GISS-AOM Subgrid-relative humidity-based scheme Subgrid plume and buoyancy-based scheme (online Research Institute, South Korea (Mir at http://aom.giss.nasa.gov/DOC4X3/ GFDL-CM2.0 2.9 K 144×90 L24 Geophysical Fluid Dynamics Laborator ATMOC4X3.TXT) et al. 2006) GISS-ER Prognostic stratiform cloud based on moisture Bulk mass flux scheme by Del Genio and Yao GFDL-CM2.1 3.4 K 144×90 L24 Geophysical Fluid Dynamics Laborator convergence (Del Genio et al. 1996) (1993)et al. 2006) HadCM3 Large-scale precipitation is calculated based on cloud Bulk mass flux scheme (Gregory and Rowntree GISS-AOM n/a $90 \times 60 L12$ Goddard Institute for Space Studies La water and ice contents (similar to Smith 1990) 1990), with the improvement by Gregory et al. (1997)http://aom.giss.nasa.gov) HadGEM1 Mixed phase cloud scheme (Wilson and Ballard Revised bulk mass flux scheme GISS-ER 2.7 K $72 \times 46 L20$ Goddard Institute for Space Studies Lal 1000)Russell et al. 2000) INM-CM3.0 Stratiform cloud fraction is calculated as linear Lagged convective adjustment after Betts (1986), $72 \times 45 L21$ INM-CM3.0 2.1 K Institute of Numerical Mathematics, Ru function of relative humidity but with changed referenced profile for deep IPSL-CM4.0 4.4 K 96 × 72 L19 Institut Pierre-Simon Laplace, France convection (http://dods.ipsl.jussieu.fr/omamce/IPS IPSL-CM4 Cloud cover and in-cloud water are deduced from Moist convection is treated using a modified version $320 \times 160 \text{ L56 T106}$ Center for Climate System Research, Ja MIROC3.2(hires) 4.3 K the large-scale total water and moisture at (Grandpeix et al. 2004) of the Emanuel (1991) MIROC3.2(medres) 4.0 K $128 \times 64 \text{ L}20 \text{ T}42$ Center for Climate System Research, Ja saturation (Bony and Emmanuel 2001) scheme $128 \times 64 \text{ L}30 \text{ T}42$ MRI-CGCM2.3.2 3.2 K Meteorological Research Institute, Japa MIROC3.2-medres Prognostic cloud water scheme based on Le Treut Prognostic closure of Arakawa-Schubert based on $256 \times 128 \text{ L}26 \text{ T}85$ MIROC3.2-hires NCAR-CCSM3 2.7 K National Center for Atmospheric Resea and Li (1991) Pan and Randall (1998) with relative NCAR-PCM 2.1 K 128×64 L26 T42 humidity-based suppression (Emori et al. 2001) National Center for Atmospheric Resea MRI-CGCM2.3.2a Precipitation occurs whenever the local relative Prognostic Arakawa-Schubert based on Pan and et al. 2006) humidity is supersaturated Randall (1998) PCM Precipitation occurs whenever the local relative Zhang and McFarlane (1995) scheme

Kharin et al, Journal of Climate 2007 doi: 10.1175/JCLI4066.1

Dai, A.,J. Climate 2006 doi: 10.1175/JCLI3884.1

2: Provide some (slightly) organised citation material (and author and readers graft hard to get the information)

humidity is supersaturated

State of the art: Model Comparison

Model	Code	ElNiño amplitude	SST (°C) Niño3	τ _x (Pa) Niño4	SCRS (%)	ICS	2×CO ₂ (%)	4×CO ₂ (%)
Observed		0.88 ± 0.02	25.87 ± 0.05	-0.029 ± 0.006	31	8.7		
Obs 1948-1975		0.71 ± 0.04	25.72 ± 0.49	-0.032 ± 0.003		10.4		
Obs 1976-2004		0.94 ± 0.36	26.03 ± 0.06	-0.026 ± 0.000		8.5		
CCSM3	A	0.78 ± 0.04	25.29 ± 0.08	-0.038 ± 0.000	20	6.1	-13	
CGCM3.1(T47)	в	0.42 ± 0.03	24.63 ± 0.15	-0.045 ± 0.002	41	11.6	+ 5	+2
CNRM-CM3	С	1.66 ± 0.21	23.43 ± 0.06	-0.026 ± 0.000	3	6.3	+1	+7
CSIRO-Mk3.0	D	0.90 ± 0.17	24.34 ± 0.23	-0.034 ± 0.000	20	7.8		_
ECHAM5/MPI-OM	E	1.16 ± 0.09	25.16 ± 0.06	-0.034 ± 0.001	13	7.3	+29	+31
FGOALS-g1.0	F	1.93 ± 0.34	26.57 ± 0.16	-0.028 ± 0.001	0	6.6	-27	_
GFDL-CM2.0	G	0.75 ± 0.19	24.74 ± 0.15	-0.043 ± 0.000	37	8.8	+20	+25
GFDL-CM2.1	н	1.32 ± 0.08	24.98 ± 0.14	-0.044 ± 0.000	12	12.8	+2	-18
GISS-AOM	I	0.17 ± 0.03	27.07 ± 0.01	-0.036 ± 0.000	45	17		_
GISS-EH	J	0.86 ± 0.13	24.53 ± 0.13	-0.037 ± 0.001	24	0.8	-5	
GISS-ER	K	0.24 ± 0.01	28.16 ± 0.03	-0.026 ± 0.001	22	2.2	-21	+8
INM-CM3	L	0.92 ± 0.10	24.15 ± 0.09	-0.025 ± 0.001	23	6.2		
IPSL-CM4	M	1.00 ± 0.02	26.28 ± 0.08	-0.026 ± 0.000	13	5.9	-16	
MIROC3.2(hires)	N	0.35 ± 0.01	25.46 ± 0.14	-0.042 ± 0.002	86	15.4	_	
MIROC3.2(medres)	0	0.44 ± 0.11	24.81 ± 0.03	-0.040 ± 0.000	60	10.7	+ 5	+2
MRI-CGM2.3.2	Р	0.70 ± 0.05	25.04 ± 0.04	-0.045 ± 0.000	35	16	+34	+77
PCM	0	0.89 ± 0.19	24.23 ± 0.11	-0.034 ± 0.001	11	6.1	-8	-13
UKMO-HadCM3	R	0.77 ± 0.09	25.58 ± 0.07	-0.045 ± 0.001	13	10.3	_	_
UKMO-HadGEM1	S	0.68 ± 0.17	23.69 ± 0.12	-0.064 ± 0.001	28	8.9		
SINTEXT30	Т	0.61 ± 0.09	25.90 ± 0.08	-0.041 ± 0.001	13	8.5		
SINTEXT106	U	0.74 ± 0.07	26.27 ± 0.16	-0.035 ± 0.002	5	7.0		
SINTEXT106mod	V	0.67 ± 0.06	26.84 ± 0.25	-0.041 ± 0.002	8	6.6		
HadOPA	W	1.67 ± 0.14	27.46 ± 0.36	-0.035 ± 0.001	5	7.5		

Table 2 Main El Niño, mean state and seasonal cycle properties of the models (pre-industrial control)

CSRS is the seasonal cycle relative strength (in %), ICS the summer interannual coupling strength (in 10^{-3} Pa/C). The El Niño amplitude change to doubling and quadrupling of CO₂ (when compared to picntrl) are shown in the last two columns. The El Niño amplitude is defined as the standard deviation of SST in the Nino3 region. Errors were estimated with a moving block bootstrap to account for serial correlation (windows: El Niño period of Fig. 1 for standard deviation and 10 months for means). The amplitude change values underlined

3: Calculate and tabulate some interesting properties and bury in a table or figure

Guilyardi E. (2006): El Niño- mean state - seasonal cycle interactions in a multi-model ensemble. Clim. Dyn., 26:329-348, DOI: 10.1007/s00382-005-0084-6

Why does this information detail matter?

... surely a technical paper can make lots of technical references, and those in the know, are, ... in the know?

By and large: the climate projections community is actually a group of communities: From next generation "experimenters", to "big" GCM modellers, to regional modellers, impacts assessment modelling, to impacts and adaptation modelling. Information does not easily flow between communities!

British Atmospheric Data Centre NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL

Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

We've already seen concepts:

- Experiments (e.g. specific scenario projections)
- Models, with specific (experiment dependent)
 - Resolution & Grids
 - combinations of sub-component models for specific processes.

and

- Simulations
 - Models run for specific experiments (and hence specific "boundary conditions", e.g. CO2 projections)
 - with specific output variables, frequencies, and durations
 - run on specific platforms

CHNOLOGY FACILITIES COUNCIL

ATURAL ENVIRONMENT RESEARCH COUNCIL

Metafor:

- 2.2 M euro EC project to deliver
 - a "Common Information Model" to document these concepts, particularly in the context of supporting the next IPCC assessment report.
 - Associated infrastructure to collect and view such documentation, and
 - Build an accompanying governance structure ...

Science & Technology **Facilities** Council

AtmChem2D-Sources AtmChem3D-Sources AtmChemEmissionAndConc **AtmChemKeyProperties** AtmChemSpaceConfig AtmChemTransport AtmGasPhaseChemistry AtmHeterogeneousChemistry AtmosAdvection AtmosCloudScheme AtmosConvectTurbulCloud AtmosDynamicalCore AtmosHorizontalDomain AtmosKeyProperties AtmosOrographyAndWaves Atmosphere

(Yes we know we shouldn't have this sort of detail in the UML, and it wont be ... shortly)

«enum»

- Advection
- AerolEmissionAndConc
- Aerosol2D-Sources Aerosol3D-Sources
- **AerosolKeyProperties**
- AerosolModel
- Aerosols.
- AerosolSpaceConfig
- AerosolTransport
- AtmChem2D-Sources
- AtmChem3D-Sources
- **AtmChemEmissionAndConc**
- **AtmChemKeyProperties**
- AtmChemSpaceConfig
- AtmChemTransport
- AtmGasPhaseChemistry
- AtmHeterogeneousChemistry
- AtmosAdvection.
- AtmosCloudScheme
- AtmosConvectTurbulCloud
- **AtmosDynamicalCore**
- **AtmosHorizontalDomain**
- **AtmosKeyProperties**
- AtmosOrographyAndWaves
- Atmosphere
- **AtmosphericChemistry**
- AtmosRadiation
- AtmosSpaceConfiduration

Aerosol, Atmosphere, Atmospheric Chemistry, Land Ice, Land Surface, Ocean Biogeochem, Ocean, Sea Ice

British Atmospheric **Data Centre** NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE Centre for Environmental AND TECHNOLOGY FACILITIES COUNCIL VATURAL ENVIRONMENT RESEARCH COUNCIL

NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL

ND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

NATURAL ENVIRONMENT RESEARCH COUNCIL

- <node "freemind="" color="#0033ff" created="1233752067356" id="" link_884094832"<="" th=""></node>
MODIFIED="1255963916698" I EXI ="II SchemeType is "multi-levels"">
= CORTNAME = Subserve Size = 14 / 2 COLOR = "#996600" CRFATED = "1233752067356"
ID="Freemind Link 1138073599" MODIFIED="1257330309012" TEXT="Multi-LevelsScheme">

- <hook name="accessories/plugins/NodeNote.properties"></hook>
- <text></text>
[definition]Details for the multi-levels scheme used for sea ice representation.[/definition]
- <node <="" created="1256041603108" id="Freemind_Link_1643703382" modified="1257328758858" td=""></node>
STYLE="fork" TEXT="">
<tont name="SansSerif" size="14"></tont>
<icon builtin="pencil"></icon>

A piece of the mindmap XML ...

... vocabulary driven content in web based "human entry tool"

Model Component Sea Ice	Key Properties	Validation Status: 0.0
All buttons and links above and in this column navigate away from this	Short Name: Sea Ice Key Properties (type: SeaIceKeyProperties)	
page. Save your work first!	Implemented: Untick the box if there is no representation of SeaIceKeyProperties in your model.	(A great
Available Models Model Template dup Aerosols	Component Attributes In this section enter parameters and attributes associated with this component	for Python ar Django)
Atmosphere Atmospheric Chemistry Jund Ico	General Attributes	
Land Ite Land Surface Cean Biogeo Chemistry	ListOfPrognosticVariables Enter string value:	
Ocean Sea Ice	Use the Name and Value boxes to enter an additional parameter or attribute and it's value. The "Save parameter/attribute.	" button below will generate entry boxes for anoth
Sea Ice Key Properties	Name	Value
Component Sea Ice Key	SeaIceRepresentation	
Properties	Schene Type Choose one of: multi-levels	
Please add details of any other	if SchemeType is "multi-levels" Multi-LevelsScheme Enter string value:	
component	if SchemeType is "ice types" IceTypesScheme Ente Multi-LevelsScheme: Details for the multi-levels	scheme (sed for sea ice representation.
Add Subcomponent	Use the Name and Value boxes to enter an additional parameter or attribute and it's value. The "Save parameter-batterbute.	"button below will generate entry boxes for anoth
The buttons in this box navigate to pages for this model .	Name	Value
	'	
View	TimeSteppingFramework	

CIM Tools

Production

CIM Applications	HTML+AJAX	HTML+AJAX	HTML+AJAX
Architecture Stack	Pylons	Plone	Django
Web Service Interfaces	REST	REST	REST
CIM Tools	XML Difference	Faceted Browse	Creation
Query Interfaces	Xquery	Sparql	Django queryset
(CIM Document Model)	XML-Schema	RDF-S or OWL	Django ORM
CIM Persistence	eXist XML db	triplestore	Relational DB

Consumption

(Spot the common factor: three groups, all python)

Provenance research and Metafor

There are a number of other major projects/paradigms addressing provenance in one way or another, including, but not limited to:

- The Open Provenance Model
- The Proof Markup Language,
- ISO19156 Observations and Measurements.

Metafor is a much more specialised activity than any of those, but the metafor concepts can be abstracted into their higher level concepts.

- In 2011, Metafor will be refactored to be O&M compliant, and we will develop an automated RDF serialisation (the current serialisation to RDF/OWL is not expected to remain stable).
- The OWL version of the Metafor CIM will subsequently be related to upper level provenance ontologies.

<u>CMIP5: Fifth Coupled Model</u> Intercomparison Project

Science & Technology Facilities Council

• Global community activity under the auspices of the World Meteorological Organisation (WMO) via the World Climate Research Programme (WCRP)

•Aim:

- to address outstanding scientific questions that arose as part of the AR4 process,
- improve understanding of climate, and
- to provide estimates of future climate change that will be useful to those considering its possible consequences.

Method: standard set of model simulations in order to:

• evaluate how realistic the models are in simulating the recent past,

• provide projections of future climate change on two time scales, near term (out to about 2035) and long term (out to 2100 and beyond), and

• understand some of the factors responsible for differences in model projections, including quantifying some key feedbacks such as those involving clouds and the carbon cycle

Introduction to CMIP5: The Experiments

An important focus is model evaluation and understanding ...

Example: CMIP5 long-term suite of experiments

National Centre for

Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Take home points here:

Many distinct experiments,

with very different characteristics,

which influence the configuration of the models, (what they can do, and how they should be interpreted).

(from Karl Taylor)

Centre for Environmental Data Archival science and technology facilities council NATURAL ENVIRONMENT RESEARCH COUNCIL

Introduction to CMIP5: The Experiments

CMIP5 in numbers

Simulations:

- ~90,000 years
- ~60 experiments
- ~20 modelling centres (from around the world) using
- ~30 major(*) model configurations
- ~2 million output "atomic" datasets
- ~10's of petabytes of output
- ~2 petabytes of CMIP5 requested output
- ~1 petabyte of CMIP5 "replicated" output
- Which will be replicated at a number of sites (including ours), to start arriving in the next few months.

Of the replicants:

- ~ 220 TB decadal
- ~ 540 TB long term
- ~ 220 TB atmos-only
- ~80 TB of 3hourly data
- ~215 TB of ocean 3d monthly data!
- ~250 TB for the cloud feedbacks!
- ~10 TB of land-biochemistry (from the long term experiments alone).

SI Prefixes

S	prefix	Name	Power	of 10 or 2	Status
k	kilo	thousand	10 ³	2 ¹⁰	Count on fingers
Μ	mega	million	10 ⁶	2 ²⁰	Trivial
G	giga	billion	10 ⁹	2 ³⁰	Small
Т	tera	trillion	10 ¹²	2 ⁴⁰	Real
Ρ	peta	quadrillion	10 ¹⁵	2 ⁵⁰	Challenging
Е	exa	quintillion	10 ¹⁸	2 ⁶⁰	Aspirational
Ζ	zetta	sextillion	10 ²¹	2 ⁷⁰	Wacko
Y	yotta	septillion	10 ²⁴	2 ⁸⁰	Science fiction

Stuart Feldman, Google

Handling the data!

Earth System Grid (ESG)

US Department of Energy funded project to support the delivery of CMIP5 data to the community.

Consists of

- distributed data node software (to publish data)
- Tools (Live Access Server, LAS, Bulk Data Mover, BDM, security systems etc)
- gateway software (to provide catalog and services)

Major "technical challenge"

Earth System Grid FEDERATION (ESGF)

Global initiative to deploy the ESG (and other) software to support:

- timely access to the data
- minimum international movement of the data
- long term access to significant versions of the CMIP5 data.

Major "social challenge" as well as "technical challenge"

Earth System Grid Data Nodes

Filesystem: preferably with a DRS layout

Deployed by "data providers" to "expose" their data via "Earth System Grid Gateways"

ESGF – Starts with Data Nodes

20 to 30, globally distributed, each with o(50-1000)TB

ESGF

Data Nodes With Gateways

Data nodes publish to Gateways

Gateways replicate *metadata*

(all data visible on all gateways)

CMIP5: Handling the metadata

Three streams of provenance metadata:

- A) "archive" metadata
- B) "browse" metadata
- C) "character" metadata
- A: **Archive** Metadata: three levels of information from the file system:
- I. CF compliance in the NetCDF files
- II. "Extra" CMIP5 required attributes including a unique identifier within each file.
- III. Use of the Directory Reference Syntax (DRS) to help maintain version information.

Compliance enforced by ESG publisher.

- B: **Browse** Metadata, added independently of the archive
- Exploiting Metafor controlled vocabularies via a customised "CMIP5 questionnaire".

compliance enforced by CMIP5 quality control systems, leading to

- C: Character Metadata
- Data assessment
 - Four concepts to follow up on:
 1) A, B, C: metadata taxonomy
 2) Metafor questionnaire
 3) CMIP5 quality control
 4) Combining the streams
 (the information pipeline to the Earth System Grid Gateways)

1) Metadata Taxonomy: Discovery, Documentation, Definition

In CMIP5 we haven't really addressed formal D (ISO19115 class) metadata yet

Centre for Environmental Data Archival SCIENCE AND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

2) Metafor Questionnaire

📄 🧲 🚰 🚫 q.cmip5.ceda.ac.uk g 📄 My Delicious	🖈 🌿 🚦
CMIP5 Metadata Questionnaire (1.0) Seven mane of the Earth System Grid for inclusion in all official CM	IP5 catalogues.
The Questionnaire Support Team can be contacted on our dedicated email: <u>cmip5qh</u> Instructions for gaining access to the questionnaire can be found <u>here</u>	elp@stfc.ac.uk :
CMIP5 Model Metadata	
Wodel Centre Metadata Entry Choose your centre from below: 1. Example (Dummy Centre used to hold examples) 2. Test Centre (Test area) CAWCR (Centre for Australian Weather and Climate Research) CCCMA (Canadian Centre for Climate Modelling and Analysis) CMA-BCC (Beijing Climate Center, China Meteorological Administration) CNRM/CERFACS (Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formation Avancees en Calcul Scientif EC-Earth (Europe) GFDL (Geophysical Fluid Dynamics Laboratory) INM (Russian Institute for Numerical Mathematics) IPSL (Institut Pierre Simon Laplace) LASG (Institute of Atmospheric Physics, Chinese Academy of Sciences China) MIROC (University of Tokyo, National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology) MIPI-M (Max Planck Institute for Meteorology) MIRI (Japanese Meteorological Institute) NCAR (US National Centre for Atmospheric Research) NCAS (UK National Centre for Atmospheric Science) NIMR (Korean National Institute for Meteorological Research)	Metadata Feeds Available These are atom feeds to the xml documents which have been published from the metadata entry: ⓐ all ⓑ component ⓑ experiment ⓑ fil ⓑ platform ⓑ simulation ⓑ test XML documents are not meant for humans. Links to catalogues and portals for CMIP5 data and metadata will appear here when they are available.

Centre for Environmental Data Archival science and technology facilities council NATURAL ENVIRONMENT RESEARCH COUNCIL

Metafor questionnaire: many parts ...

My Delicious	
	CMIP5 Metadata Questionnaire (1.0) Completed data will be sent to the Earth System Grid for inclusion in all official CMIP5 catalogues.
	The Questionnaire Support Team can be contacted on our dedicated email: <u>cmip5qhelp@stfc.ac.uk</u> Instructions for gaining access to the questionnaire can be found <u>here</u>
mmary Experiments Model:E	Example Model 1 Grid:Example Grid 1 Simul:Example Simulation Files References Parties Help About
Update simulation Example Ensemble of 10-year hindcasts and Prec	Simulation in experiment 1.1 decadal1960 Validation Status: 0.0 dictions. Assess model skill in forecasting climate change on time-scales when the initial climate may exert some influence.)
All buttons and links in the tabs and his column navigate away from this page. Save your work first!	General Characteristics of the Simulation In this box you fill out the general characteristics of the simulation (or ensemble). Short Name: Example Simulation
Dependencies List of tasks you need to carry out: it will be best to proceed down this ist in order!	Long Name: An example simulation entry Simulation used: Model Example Model 1 • running on Platform MyBigComputer • . Ensemble Members: 1
: Simulation Inputs Experiment Criteria	Description (notes)
2: Model Mods 3: Conformance	Responsible Parties (use the parties tab to add more choices here): Contact: Lead Author: Funder:
Ensemble Characteristics	Duration Enter Start date/time and either End date/time or duration, where format is Year-Month-Date 00:00:00.

Centre for Environmental Data Archival science and technology facilities council

Metafor Quality Control

Specialises ISO19115 DQ package

CMIP5 qctool (courtesy of Metafor)

Data Centre NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE IATURAL ENVIRONMENT RESEARCH COUNCIL

CHNOLOGY FACILITIES COUNCIL VATURAL ENVIRONMENT RESEARCH COUNCIL

NATURAL ENVIRONMENT RESEARCH COUNCIL

Quality Control Types

Producer Quality Control

• Modellers will be doing scientific and data completeness quality control before they even attempt to publish the data.

•ESGF will do a signficant amount of automated quality control, coupled with scientific "spot checks".

• The ESGF quality control will be according to a set of defined "qc levels"

Consumer Quality Control

• Consumers will be doing additional "spot checking" whether they know it or not. They will be able to raise "issues" against data.

• They will also be able to define their own scientific measures, and enter information against specific models, and simulations. These data will be referencable and searchable

(avoiding the "buried in the table" problem demonstrated earlier)

Centre for Environmental Data Archival science and technology facilities council NATURAL ENVIRONMENT RESEARCH COUNCIL

CMIP5 Quality Control

Label	Data	Metadata
qc-1d	ESG publisher enforces some data checking	CF compliance
qc-1m		Questionnaire enforces some constraints and vocabularies, requires XSD validation.
qc-2m		Subjective examination by metafor team.
qc-2d	Automated examination with subjective spot checks: carried out at PCMDI, DKRZ and BADC.	Provisional DOI granted.
qc-3	Further subjective tests at DKRZ, author DOI granted.	approval of all metadata and output. Final
Scientific Metrics	CMIP5 requires no scientific validation, b against specific metrics of scientific intere	ut qc system will support data annotatoin est.

British Atmospheric Data Centre NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL Centre for Environmental Data Archival science and technology facilities council natural environment research council

and give access to all users

<u>CMIP5 Quality Control</u> as a gatekeeper to global data flow and access:

→ fail qcl1-d: data not published

 fail qcl1-m: no data access
 pass qcl1-d Get data to a core

data centre → Pass qcl2-d Start replication →Pass qcl2-m →Provisional DOI →Start qcl3 process eventually gain permanent DOI

British Atmospheric

IATIONAL CENTRE FOR ATMOSPHERIC SCIENCE

ATURAL ENVIRONMENT RESEARCH COUNCIL

Data Centre

CIM content: Creation and Editing

All creation tools provide atom feeds of their internal contents. XML documents are initially persisted locally and may be duplicated remotely (and persisted in different formats).

Generic editing with Geonetwork

Centre for Environmental Data Archival science and technology facilities council

Atom Feed

<?xml version="1.0" encoding="UTF-8"?> <feed xmlns="http://www.w3.org/2005/Atom">

FEED DESCRIPTION

<id>http://ceda.ac.uk/feeds/cmip5/experiment/</id> <title>CMIP5 model experiment metadata</title> <subtitle>Metafor questionnaire - completed experiment documents</subtitle> <updated>2010-03-04T00:00:00Z</updated> <link href="http://ceda.ac.uk/feeds/cmip5/experiment/" rel="self"></link> <author><name>The metafor team</name></author> <generator version="r33" uri="http://code.google.com/p/django-atompub/">>django-atompub</generator>

<entry>

Science & Technology Facilities Council

> <id>urn:uuid:1fb380d2-2759-11df-924b-00163e9152a5</id> <title>5.5-1 esmFdbk1(5.5-1 ESM feedback 1)</title> <updated>2010-03-04T00:00:00Z</updated> <published>2010-03-04T00:00:00Z</published>

ENTRY DESCRIPTION – points to XML payload

<summary>Impose conditions identical to 3.1::Control but radiation code sees CO2 concentration increase. </summary>
<content src="/cmip5/experiment/1fb380d2-2759-11df-924b-00163e9152a5/1/" type="application/xml"></content>
</entry>

<entry>

. . .

<id>urn:uuid:1fd2019c-2759-11df-924b-00163e9152a5</id>

British Atmospheric Data Centre NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL

Bringing it all together for CMIP5

Centre for Environmental Data Archival Science and technology facilities council Natural environment research council

Earth System Grid Gateways

Earth system grid data nodes "publish" to a gateway

(essentially the gateway harvests the information in their TDS catalog) and

provide a search interface both to the harvested data, and to metadata harvested from the metafor questionnaire

Gateway at the Natio	onal Center for Atmospheric Research		ESG Gateway hosted by the Program for Climate Model Diagnosis and Intercomparison
Sear	rch: Datasets for: Search Start Over To conduct a search, select a category from the pull down menu and/or enter free text into the the text box.		Search: Datasets for: Search Start Over To conduct a search, select a category from the pull down menu and/or enter free text into the the text box.
Irch Categories	Global Climate Models Community Earth System Model (CESM) CCSM 4.0 Model Output CCSM 3.0 Model Output Parallel Climate Model (PCM) Regional Climate Models NARCCAP: North American Regional Climate Assessment Program	Example Quick Links Create Account Browse Catalogs Search for Data ESG Data Gateways NCAR Gateways NCAR Gateways PCMDI Gateways Other Gateways CADIS (Arctic)	Search Categories
	NCL: NCAR Command Language PyNGL: Python Interface to the NCL Graphic Libraries PyNIO: Python Interface for NetCDF Input/Output		CMIPS Model Metadata This gateway will contain an archive of the 5th Coupled Model Intercomparison Project (CMIPS). The comprehensive scientific and technical metadata available will far exceed the information available for previous CMIP efforts. The metadata descriptions are linked to CMIP5 model outputs, and vice versa. To view the metadata describing the simulations undertaken for CMIP5, select Simulations in the Search util drown menu have.

PCMDI

NCAR

ESG Gateway hosted by the British Atmospheric Data Centre

Search	Construction Search Start Over Start or conduct a search, select a category from the pull down menu and/or enter free text into the the text box. Start over	
Search Categories	Welcome to British Atmospheric Data Centre's ESG gateway	Quick Links
Project CMIP3 Experiment	This gateway is provided by the BADC on on behalf of the the BADC on on behalf of the the European climate science NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE COMMUNITY and the IPCC Data Distribution Centre.	Create Account Browse Catalogs Search for Data
+ Realm + Variable	BADC is part of the STFC Centre for Environmental Data Archival (CEDA) and exists to curate, and facilitate access to, data of importance to the environmental science community. BADC is primarily supported by the Natural Environment Research Council via the National Centre for Atmospheric Science (NCAS). The UK component of the IPCC Data Distribution Centre is supported by the UK Department of Energy and Climate Change.	ESG Federation PCMDI Gateway BADC Gateway DKRZ Gateway
	CMIP5: The 5th Coupled Model Intercomparison Project The main reason for this gateway is to provide access to the globally distributed data produced for CMIP5 along with the accompanying metadata.	ANU Gateway NASA JPL Gateway NCAR Gateway ORNL Gateway

The comprehensive scientific and technical metadata available for CMIP5 will far exceed the information available for previous CMIP efforts. The metadata descriptions are linked to CMIP5 model outputs, and vice versa. To view the metadata describing the simulations undertaken for CMIP5, select **Simulations** in the **Search** pull down menu on the left of the box above.

Centre for Environmental Data Archival science and technology facilities council natural environment research council

Centre for Environmental Data Archival science and technology facilities council NATURAL ENVIRONMENT RESEARCH COUNCIL

Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Advanced Search

Data Centre

NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL

Search: Datasets v for:	Search Start Over
To conduct a search, select a category from the pull down menu and/or enter free	e text into the the text box.

	Total Number of Results: 15	Files Download
+ Project	1-10 of 15 results 11-15	* nc
 Experiment 	1. cmip3_drs.output.BCCR.BCM2.sresa1b.day.atmos	
< Any Experiment sresa1b	Authorization: Guest Users Data Center: ESG-BADC	Download Files
+ Realm	2. cmip3_drs.output.BCCR.BCM2.sresa1b.mon.atmos Authorization: Guest Users	Download all files for the selected datasets. Optionally use a wildcard
- Variable	Data Center: ESG-BADC	expression to filter the filenames (example: use *.nc to select all files
< Any Variable air temperature	3. cmip3_drs.output.CCCMA.CGCM3-1-T47.sresa1b.day.atmos Authorization: Guest Users Data Center: ESG-BADC	with extension nc).
	 4. cmip3_drs.output.CCCMA.CGCM3-1-T47.sresa1b.mon.atmos Authorization: Guest Users Data Center: ESG-BADC 	
	 5. cmip3_drs.output.GFDL.CM2-1.sresa1b.3hr.atmos Authorization: Guest Users Data Center: ESG-BADC 	
	 cmip3_drs.output.GFDL.CM2-1.sresa1b.day.atmos Authorization: Guest Users Data Center: ESG-BADC 	
	7. cmip3_drs.output.GFDL.CM2-1.sresa1b.mon.atmos Authorization: Guest Users Data Center: ESG-BADC	
	 cmip3_drs.output.GFDL.CM2.sresa1b.3hr.atmos Authorization: Guest Users 	

Data Archival

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL

NATURAL ENVIRONMENT RESEARCH COUNCIL

118 About Logout

Download Data

Sub Select File Results	File Do	ownload Selection					
File Name:	cmip3_drs.output.BCCR.BCM2.sresa1b.day.atmos 288 File(s)					Download ALL Selected File(s)	
".nc Use * for a wildcard character.		File	Size	Format	Location	Direct Download	
Regular Expressions will not work at this time. Sub-Select		hfls_A2_BCM2_sresa1b_r1_ 2056-2065.nc	114.25 MB	NetCDF	DISK	download	
		hfls_A2_BCM2_sresa1b_r1_ 2056-2065.nc	114.25 MB	NetCDF	DISK	download	
Variables:	Ø	hfls_A2_BCM2_sresa1b_r1_ 2056-2065.nc	114.25 MB	NetCDF	DISK	download	
Latent Heat Flux (hfls) Sensible Heat Flux (hfss)		hfls_A2_BCM2_sresa1b_r1_ 2056-2065.nc	114.25 MB	NetCDF	DISK	download	
Specific Humidity (hus) Accumulated Total Precipitation (pr) Surface Precipitation (pr)		hfls_A2_BCM2_sresa1b_r1_ 2081-2090.nc	114.19 MB	NetCDF	DISK	download	
 Sufface Pressure (ps) Mean Sea Level Pressure (psl) Surface Downward Longwave Radiation 		hfls_A2_BCM2_sresa1b_r1_ 2081-2090.nc	114.19 MB	B NetCDF DISK download			
(rlds)		hfls_A2_BCM2_sresa1b_r1_ 2081-2090.nc	114.19 MB	NetCDF	DISK	download	
 Iop-ot-Atmosphere upward Longwave Radiation (rlut) Surface Downward Shortwave Radiation 	1	hfls_A2_BCM2_sresa1b_r1_ 2081-2090.nc	114.19 MB	NetCDF	DISK	download	
(rsds) Surface Upward Shortwave Radiation (rsus)		hfls_A2_BCM2_sresa1b_r1_ 2091-2100.nc	102.49 MB	NetCDF	DISK	download	
 ✓ All remperature (ta) ✓ Temperature 2m (tas) ✓ 2m may temperature (tasmay) 		hfls_A2_BCM2_sresa1b_r1_ 2091-2100.nc	102.49 MB	NetCDF	DISK	download	
2 2m min temperature (tasmin) 7 2m 2m Vind Component (ua)	V	hfls_A2_BCM2_sresa1b_r1_ 2091-2100.nc	102.49 MB	NetCDF	DISK	download	

British Atmospheric Data Centre

NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL

Centre for Environmental Data Archival SCIENCE AND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

Access Control and Delivery: (1) Via Gateway

Wget scripts access secure data using myproxy and X509 certficates

Access Control and Delivery: (2) Direct from TDS on Data Node

THREDDS Data Server

Catalog https://cmipdn1.badc.rl.ac.uk/thredds/esgcet/2/cmip3_drs.output.UKMO.HADCM3.1pctto2x.mon.seaIce.v1.htr

Dataset:

cmip3_drs.output.UKMO.HADCM3.1pctto2x.mon.seaIce/sic_O1_HADCM3_1pctto2x_r1_1859_D(

- Data format: NetCDF
- Data size: 159.2 Mbytes
- Data type: GRID
- ID: cmip3_drs.output.UKMO.HADCM3.1pctto2x.mon.seaIce.v1.sic_O1_HADCM3_1pctto2x_r1_1859_Dec_to_1939_Dec.nc
- RestrictAccess: esg-user

Access:

1. HTTPServer:

/thredds/fileServer/cmip3 drs/output/UKMO/HADCM3/1pctto2x/mon/seaIce/sic/r1/v1/sic O1 HADCM3 1pctto2x r1 1859 Dec to 1939 Dec.nc

Variables:

- Vocabulary [CF-1.0]:
 - sic = Sea Ice Concentration = sea_ice_area_fraction (%)
 - sit = Sea Ice Thickness = sea ice thickness (m)

Properties:

- file id = "cmip3 drs.output.UKMO.HADCM3.1pctto2x.mon.seaIce.sic O1 HADCM3_1pctto2x r1_1859 Dec to 1939 Dec.nc"
- file version = "1"
- size = "159288492"
- mod time = "2009-12-04 11:52:23"
- checksum = "e6a90b1eb5291c30c9c40d52f1828cef"
- checksum_type = "MD5"

NATIONAL CENTRE FOR ATMOSPHERIC SCIENCE NATURAL ENVIRONMENT RESEARCH COUNCIL

Centre for Environmental LE AND TECHNOLOGY FACILITIES COUNCIL VATURAL ENVIRONMENT RESEARCH COUNCIL

Access Control and Delivery: (2) Direct from TDS on Data Node

Data Access Login

1

Science & Technology Facilities Council

OpenID Login	
Please ente	r your OpenID and you will be redirected to the login page at that site:
🖒 OpenID	GO
	Remember my OpenID on this computer

Access Control and Delivery: (2) Direct from TDS on Data Node

Data Access Login

Science & Technology

Facilities Council

Access Control and Delivery: (2) Direct from TDS on Data Node

Data Access Login

Science & Technology Facilities Council

	OpenID Login		
1	Please enter your OpenID and you will be redirected	GO GO	
Login 2	Approve OpenID Request?		3
Username: (lawrence Password: 💿	The website https://cmip-dn1.badc.rl.ac.uk/ has requested your	OpenID for sign in:	
Login Cancel	https://ceda.ac.uk/openid/Bryan.Lawrence		
CEDA OpenID Provider Site.	Would you like to pass your OpenID credential information back to	o https://cmip-dn1.badc.rl.ac.uk/ and return to this site	a? ⑦ No
		Remember this decision for session du	ration
	CEDA OpenID Provider Site.	Logged in as lawrence. [Log out]	Centre for Environmental Data Archival science and technology facilities council Natural environment research council

ESG (and CEDA) have comprehensive access control middleware suitable for use in browsers and command line – federated globally!

Centre for Environmental Data Archival science and technology facilities council

(Back to the data):User Perspective

Data nodes will also deploy other tools: secure opendap coming soon (it's done, with modifcations to the netcdf client libraries too) ... it just needs to be configured to be visible.

Download Data					
Earth Syste	m Grid				A Carrow
	Home Data Account About Co	ntact Us	Logout		
ownload Data					
ub Select File Results	File Download Selection				
le Name:	project=IPCC Fourth Assessment Report, model=Canadian Centre Download ALL Selected File				
e * for a wildcard character. egular Expressions will not work at this time.	experiment=doubled CO2 equilibrium, 2 File(s)	run=run1,	del, 147, time_frequen	cy=mon, rea	Im=ice, version=1
Sub-Select	File	Size	Format	Location	Direct Download
ariables: Sea Ice Concentration (sic)	<pre>sic_o1_2xco2_1_cgcm3.1_t47_ 001_030.nc</pre>	6 MB	NetCDF	DISK	download
Sea lee concentration (sic)	sit_o1_2xco2_1_cgcm3.1_t47_ 001_030.nc	6 MB	NetCDF	DISK	download
Sea Ice Thickness (sit)					

Centre for Environmental Data Archival science and technology facilities council NATURAL ENVIRONMENT RESEARCH COUNCIL

New Version Notification

Moving forward

- The Earth System Grid is a U.S. Project.
 - There will undoubtedly be successor projects
 - (Key role of ESG Curator and the NOAA Global Interoperability Project)
- The Earth System Grid Federation is a global activity,
 - led by the Global Organisation for Earth System Science Portals (GO-ESSP)
- In Europe, we are underpinning ESGF via two EC funded projects:
 - Metafor (which we have seen a lot of), and
 - IS-ENES (InfraStructure for a European Network for Earth Simulation)
 - (and much national work too of course)
- Metafor and IS-ENES are working on complementary information architectures
 - Metafor will finish in 2011, IS-ENS has some years to run.
 - (Metafor will leave an international governance system in place for the Common Information Model)

Peroration

The Climate problem is one that integrates much of e-research, and in particular, the neccessity for

- Major physical e-infrastructure (networks, supercomputers)
- Comprehensive information architectures covering the gamut of the information life cycle, including annotation (particularly of quality)

... and hard work populating these information objects, particularly with provenance detail.

- Sophisticated tooling to produce and consume the data and information objects
- State of the art access control techniques

Major distributed systems are social challenges as much as technical challenges.

The Fifth Coupled Model Intercomparison project (CMIP5) provides an exemplar of most of these things, supported as it is, by a major global federation of actitvities.

