Issues on the way to an Open (Climate) Modelling Ecosystem

Bryan Lawrence (@bnlawrence) V. Balaji C. Deluca Eric Guilyardi Karl Taylor

With considerable help from the ES-DOC team; especially, Gerry Devine, Mark Morgan, Sylvia Murphy, Charlotte Pascoe, and Allyn Treshansky.

A lot of this is from: Lawrence, B. N., Balaji, V., Bentley, P., Callaghan, S., DeLuca, C., Denvil, S., Devine, G., Elkington, M., Ford, R. W., Guilyardi, E., Lautenschlager, M., Morgan, M., Moine, M.-P., Murphy, S., Pascoe, C., Ramthun, H., Slavin, P., Steenman-Clark, L., Toussaint, F., Treshansky, A., and Valcke, S.: **Describing Earth system** simulations with the Metafor CIM, Geosci. Model Dev., 5, 1493-1500, doi:10.5194/gmd-5-1493-2012, 2012

Outline

Complex Models and Communities

Context

- Reprise: what is a model? (Software);
- How do we construct models? (Methodology);
- Who builds and uses models? (Communities);
- How do they understand each other (Poorly)
- How do we compare models (With Difficulty)

Documenting Simulation (as opposed to models)

- Metafor/Curator and CMIP5
- The Future: ES-DOC

Engagement

- Quality, Validation and Review

James Lovelock at the Geological Society, Burlington House, 5th May 2011

Science is still divided into co-existing disciplines each with its own language, journals and forceful defenders. We are tribal animals and such a trait is hard to resist.

Societal needs for earth system science

- What is happening to climate?
 (globally, regionally and locally)
- 2. Why is it happening?
- 3. What is going to happen?
- 4. How can societies respond?

Observation

Attribution

Prediction

Adaptation & Mitigation

Earth System Models (ESM)

Integrated Assessment Models (IAM)

Integrated Environmental Models (IEM)

Information for decision making

AGU December 2012 Slide 5

Quite a few tribes there!

and so to

How we think about models

(Which is not how everyone does!)

The world "model" has somewhat wider usage!

(It could be a person, a mouse, a hypothesis, a statistical summary, a 3D structure ...)

Sometimes it's easier to think of this sort of model as a "simulator" ...

The world in global <u>climate</u> models

National Centre for Atmospheric Science AGU December 2012 Slide 8

Simplified View of the Simulation Process

Identify and **understand processes**

Construct **mathematical** model of the **process**

(Sometimes) Create empirical/**statistical representation** of the process (aka "parameterisation")

Couple the process models together.

Test and improve the "integrated" systems

AGU December 2012 Slide 9

Prediction/Projection and Consequences

Simplified View of the Simulation Process

Identify and **understand processes**

Construct **mathematical** model of the **process**

(Sometimes) Create empirical/**statistical representation** of the process (aka "parameterisation")

Couple the process models together.

Test and improve the "integrated" systems

Which processes? What mathematical representation? Which algorithm? What parameters for the model/algorithm? How coupled? How tested? How well validated? How used? To improve the model? To predict/project? In all cases, what and why?

Prediction/Projection and Consequences

National Centre for Atmospheric Science AGU December 2012 Slide 10

Many, many processes, many, many communities!

Interconnected communities have problems which require coupling of models and sub-models between communities!

Not just a technical problem ... language problems ... scientific understanding problems ... and ...

(Figure adapted from Moss et al., 2010).

So what do they have in common?

They're all carrying out activities developing and using software to produce data which is used somehow to create knowledge which either informs policy or improves our scientific knowledge (or both).

In terms of a policy, a key requirement of this activity, is that it both depends on trust (between parties) and requires trust to be useful.

Trust depends on many things, but one of the key properties of trust is understanding ...

... and that's hard to come by when the linkage between one community and another is just data ...

Rowan Sutton: "There are no end-users of climate predictions"

Gavin Schmidt: "the public ... will get used to dealing with climate model outputs ... however, an increased amount of hand-holding will be necessary"

State of the Art: Model Comparison

Model	Institution	Atmosphere resolution	Ocean resolution	Length picntrl	Length lpctto2x	Length lpctto4x
CCSM3	NCAR (USA)	T85L26	1.125°×0.27°L40	230	150	n/a
CGCM3.1(T47)	CCCMA (Canada)	T47L31	1.85°×1.85°L29	500	150	150
CNRM-CM3	Meteo-France/CNRM (France)	T63L45	2°×0.5°L31	390	100	110
CSIRO-Mk3.0	CSIRO (Australia)	T63L18	1.875°×0.84°L31	380	10	n/a
ECHAM5/MPI-OM	MPI-M (Germany)	T63L31	1.5°×0.5°L40	332	100	81
FGOALS-g1.0	LASG/IAP (China)	T42L26	1°×1°L33	150	80	n/a
GFDL-CM2.0	GFDL (USA)	2.5°×2°L24	1°×0.33°L50	500	100	160
GFDL-CM2.1	GFDL (USA)	2.5°×2°L24	1°×0.33°L50	500	150	160
GISS-AOM	NASA/GISS (USA)	4°×3°L12	4°×3°L16	251	n/a	n/a
GISS-EH	NASA/GISS (USA)	5°×4°L20	2°×2°L16	500	80	150
GISS-ER	NASA/GISS (USA)	5°×4°L20	5°×4°L13	400	100	n/a
INM-CM3	INM (Russia)	5°×4°L21	2.5°×2°L33	330	n/a	n/a
IPSL-CM4	IPSL (France)	2.5°×3.75°L19	2°×0.5°L31	230	80	n/a
MIROC3.2(hires)	CCSR/NIES/FRCGC (Japan)	T106L56	0.28°×0.1875°L47	100	10	n/a
MIROC3.2(medres)	CCSR/NIES/FRCGC (Japan)	T42L20	1.4°×0.5°L43	500	100	150
MRI-CGM2.3.2	MRI (Japan)	T42L30	2.5°×0.5°L23	350	150	150
PCM	NCAR (USA)	T42L18	0.66°×0.5°L32	350	96	90
UKMO-HadCM3	HadleyCentre (UK)	3.75°×2.5°L19	1.25°×1.25°L20	341	10	n/a
UKMO-HadGEM1	HadleyCentre (UK)	1.875°×1.25°L38	1°×0.33°L40	80	10	n/a
SINTEX T30	IPSL/INGV (France, Italy)	T30L19	2°×0.5°L31	200	n/a	n/a
SINTEX T106	INGV/IPSL (Italy, France)	T106L19	2°×0.5°L31	100	n/a	n/a
SINTEX T106mod	IPSL/INGV (France, Italy)	T106L19	2°×0.5°L31	100	n/a	n/a
HadOPA	CGAM/IPSL (UK,France)	3.75°×2.5°L19	2°×0.5°L31	100	n/a	n/a

Table 1 The models used in the present study, including, configurations (near the equator) and number of years of simulations

The only flux corrected model is MRI-CGM2.3.2

1: Tabulate some interesting property (and author grafts hard to get the information)

Guilyardi E. (2006): El Niño- mean state - seasonal cycle interactions in a multi-model ensemble. Clim. Dyn., 26:329-348, DOI: 10.1007/s00382-005-0084-6

State of the Art: Model Comparison

TABLE 2. Description of model parameterizations for stratiform (i.e., large scale) and convective precipitation.

TABLE 1. List of IPCC gl	obal coupled climate n	nodels analyzed in the present study and	Model name	Stratiform precipitation	Convective precipitation
Model resolution is characterized by the size of a horizontal grid on which model output wa levels. Spectral models are also characterized by their spectral truncations. Equilibrium clima		CCSM3, CCSM2	Prognostic condensate and precipitation parameterization (Zhang et al. 2003)	Simplified Arakawa and Schubert (1974) (cumulus ensemble) scheme developed by Zhang and McFarlane (1995)	
Model label and climate sensitivity	Resolution	Institution	CGCM3.1	Precipitation occurs whenever the local relative humidity is supersaturated	Zhang and McFarlane (1995) scheme
CGCM3.1(T47) 3.6 K	96 × 48 L32 T47	Canadian Centre for Climate Modellin (http://www.cccma.ec.gc.ca/models/cg	CNRM-CM3 CSIRO-Mk3.0	Statistical cloud scheme of Ricard and Royer (1993) Stratiform cloud condensate scheme from Rotstayn	Mass flux convection scheme with Kuo-type closure Bulk mass flux convection scheme with stability-
CGCM3.1(T63) 3.4 K	$128\times 64~\text{L}32~\text{T}63$	Canadian Centre for Climate Modellin (http://www.cccma.ec.gc.ca/models/cg	ECHAM5/MPI-OM	Prognostic equations for the water phases, bulk cloud microphysics (Lohmann and Roeckner 1996)	Bulk mass flux scheme (Tiedtke 1989) with modifications for deep convection according to
CNRM-CM3 n/a	128×64 L45 T63	Centre National de Recherche Météor manuscript submitted to Climate Dy	FGOALS-91.0	Same as PCM	Nordeng (1994) Zhang and McFarlane (1995) scheme
ECHAM5/MPI-OM 3.4 K	192 × 96 L31 T63 96 × 48 L 19 T30	Max-Planck-Institut für Meteorologie, Meteorological Institute of the University	GFDL-CM2.0, GFDL-CM2.1	Cloud microphysics from Rotstayn (2000) and macrophysics from Tiedtke (1993)	Relaxed Arakawa-Schubert scheme from Moorthi and Suarez (1992)
CEDL CM2020 K	144 × 00 L 24	Research Institute, South Korea (Mi	GISS-AOM	Subgrid-relative humidity-based scheme	Subgrid plume and buoyancy-based scheme (online at http://aom.giss.nasa.gov/DOC4X3/
GFDL-CM2.0 2.9 K	144 × 90 L24	et al. 2006)	GISS-ER	Prognostic stratiform cloud based on moisture	ATMOC4X3.TXT) Bulk mass flux scheme by Del Genio and Yao
GFDL-CM2.1 3.4 K	144×90 L24	Geophysical Fluid Dynamics Laborato et al. 2006)	HadCM3	convergence (Del Genio et al. 1996) Large-scale precipitation is calculated based on cloud	(1993) Bulk mass flux scheme (Gregory and Rowntree
GISS-AOM n/a	$90 \times 60 \text{ L}12$	Goddard Institute for Space Studies La http://aom.giss.nasa.gov)		water and ice contents (similar to Smith 1990)	1990), with the improvement by Gregory et al. (1997)
GISS-ER 2.7 K	$72 \times 46 \text{ L}20$	Goddard Institute for Space Studies La Russell et al. 2000)	HadGEM1	Mixed phase cloud scheme (Wilson and Ballard 1999)	Revised bulk mass flux scheme
INM-CM3.0 2.1 K IPSL-CM4.0 4.4 K	72 × 45 L21 96 × 72 L19	Institute of Numerical Mathematics, R Institut Pierre-Simon Laplace, France	INM-CM3.0	Stratiform cloud fraction is calculated as linear function of relative humidity	Lagged convective adjustment after Betts (1986), but with changed referenced profile for deep convection
MIROC3.2(hires) 4.3 K MIROC3.2(medres) 4.0 K	$320 \times 160 \text{ L56 T106}$ $128 \times 64 \text{ L20 T42}$	(http://dods.ipsl.jussieu.fr/omamce/IP Center for Climate System Research, J Center for Climate System Persearch, I	IPSL-CM4	Cloud cover and in-cloud water are deduced from the large-scale total water and moisture at	Moist convection is treated using a modified version (Grandpeix et al. 2004) of the Emanuel (1991)
MRI-CGCM2.3.2 3.2 K NCAR-CCSM3 2.7 K	$128 \times 64 \text{ L}20 \text{ T}42$ $128 \times 64 \text{ L}30 \text{ T}42$ $256 \times 128 \text{ L}26 \text{ T}85$ $128 \times 64 \text{ L}26 \text{ T}42$	Meteorological Research Institute, Jap National Center for Atmospheric Rese	MIROC3.2-medres MIROC3.2-hires	saturation (Bony and Emmanuel 2001) Prognostic cloud water scheme based on Le Treut and Li (1991)	scheme Prognostic closure of Arakawa–Schubert based on Pan and Randall (1998) with relative humidity, based suppression (Emori et al. 2001)
NCAK-PUM 2.1 K	120 × 04 L20 142	et al. 2006)	MRI-CGCM2.3.2a	Precipitation occurs whenever the local relative humidity is supersaturated	Prognostic Arakawa–Schubert based on Pan and Randall (1998)
			PCM	Precipitation occurs whenever the local relative	Zhang and McFarlane (1995) scheme

Zhang and McFarlane (1995) scheme

Kharin et al, Journal of Climate 2007 doi: 10.1175/JCLI4066.1

Dai, A., J. Climate 2006 doi: 10.1175/JCLI3884.1

2: Provide some (slightly) organised citation material (and author and readers graft hard to get the information)

Precipitation occurs whenever the local relative

humidity is supersaturated

State of the art: Model Comparison

Figure 1. Hierarchical clustering of the CMIP3 models for (left) surface temperature and (right) precipitation in the model control state. Models from the same institution and models sharing versions of the same atmospheric model are shown in the same color. Observations also are marked by the same color. Models without obvious relationships are shown in black. Masson, D., and R. Knutti (2011), Climate model genealogy, Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.

3: Resort to statistics to discover something we should **know** (or at least suspect)

So, can we improve the information about the process?

All parties are carrying out **simulations** which **conform** to **experimental requirements** which exploit both **initial data** and **specific versions of software** which encapsulate **specific science** to produce **output data** which is **available somewher**e using some **service**.

And all these concepts can be described, and both the **quality** of the descriptions and the **quality of each of the steps** can be themselves be described.

Ideally,

- these descriptions themselves are indexed, comparable, and searchable, and
- both the participants in the process, and the users of it, can exploit it all!

From those concepts, we can, and have, built infrastructure ...

A few quick words about what we have built before we talk about what it's for ...

- A "Common Information "Model" (CIM) for describing the process.
 - Some vocabularies to exploit it ...
 - Tools to create and consume content

A Common Information "Model"

... and more ... platform ... data etc.

Experiments and Requirements

Project CMIP5

ID 1.3 noVolc1960

Short Name noVolc1960

Long Name decadal 10 year hindcast without volcanoes

Description Hindcast without volcanoes. Additional 10 year runs for experiment 1.1 without including the Agung, El Chichon and Pinatubo eruptions. The atmospheric composition (and other conditions) should be prescribed as in the historical run (expt. 3.2) and the RCP4.5 scenario (expt. 4.1) of the long-term suite of experiments. Ocean initial conditions should be in some way representative of the observed anomalies or full fields for the start date. Land, sea-ice and atmosphere initial conditions are left to the discretion of each group. Simulations should be initialized towards the end of 1960, 1975, 1980, 1985, and 1990. Calendar start date can be 1st September, 1st November, 1st December or 1st January, according to the convenience of the modeling group. Dates should allow complete years/decades to be analyzed. A minimum ensemble size of 3 should be produced for each start date.

Rationale Volcano-free hindcasts. Assess the impact of volcanic eruptions on decadal predictions.

NUMERICAL REQUIREMENTS Boundary Conditions

Name 1.3.bc.ant_aer **Description** Imposed changing concentrations or emissions of aerosols (anthropogenic)

Name 1.3.bc.ant_aer_prec **Description** Imposed changing concentrations of aerosol (anthropogenic) precursors

Name 1.3.bc.ant_wmg **Description** Imposed changing atmospheric composition (anthropogenic)

Name 1.3.bc.LU Description Imposed changing land use

... (skipping some) ...

AGU December 2012

Slide 20

Initial Conditions

Name 1.3.ic.oc ID ic.007 Description Ocean Initial Conditions must represent in some measure the observed anomalies for the start date used

Spatio Temporal Constraints

Name 1.3.stc.decadal_10yr ID stc.001 Description Run for 10 years

Name 1.3.stc.decadal_30yr ID stc.003 Description Run for 30 years

Can ask the question (and compare answers) to "How was land use forcing done" (How did simulations conform to requirement 1.3.bc.LU)

Tooling to collect model scientific descriptions of models (e.g. CMIP5 questionnaire):

Summary Experiments Model:	JustAtest Grid:T156L31 Simul:decadal1960	Files References Parties Help About
Model Component Atmos Ra	diation	Validation Status: 0.0
All buttons and links above and in this column navigate away from this page. Save your work first!	Short Name: Atmos Radiation (t Implemented: Untick the box if there is no rep	ype: AtmosRadiation) resentation of AtmosRadiation in your model.
Available Models	Long Name: Responsible Parties (Use the parties tab to add more ch Contact:	oices here): Principal Investigator: Funder: Copy Parties to sub-components
Atmosphere Atmos Key Properties Atmos Dynamical Core Atmos Radiation Atmos Convect Turbul	Grid Please select an appropriate grid from those you have Grid: Copy Grid to sub-con	e described using the grid tab mponents 🗐
Cloud Atmos Orography And	General Attributes TimeStep Enter string value:	
Waves • Atmospheric Chemistry	AerosolTypes Choose one or more of:	sulphate, nitrate, sea salt
Land Ice Land Surface Ocean Biogeo Chemistry Ocean Sea Ice	Uncose one or more or: Use the Name and Value boxes to enter an additional parameter/attribute. Name	I par Imitrate I par Imitrate I dust Imitrate I ce Imitrate I organic Delete
Component Atmos Radiation Please add details of any other relevant subcomponents of this	Longwave SchemeType Choose one of	BC (black carbon / soot) SOA (secondary organic aerosols) pOM (particulate organic matter)
component	SchemeMethod Choose one of	
Add Subcomponent The button(s) in this box navigate to pages which further describe this	Use the Name and Value boxes to enter an additional parameter/attribute.	alue: Il parameter or attribute and it's value. The "Save" button below will generate entry boxes for another Value
component. Inputs Needed		Delete

Toolng Exploits Vocabularies: Consensus Process

Consider CMIP5

CMIP5 Federated Archive

Summary					
Modeling centers	27				
Models	59				
Experiments	96				
Data nodes	22				
P2P Index	11				
Datasets	57830				
Size	1,795.11 TB				
Files	3,900,145				

(Nov 30, 2012)

Never mind the decadal projections etc

Intimidating!

AGU December 2012 Slide 23

... but some of it is quite well described ...

CMIP5 Metadata Questionnaire (1.6.0)								
The Questionnaire Support Team can be contacted on our dedicated email: <u>cmip5ghelp@stfc.ac.uk</u> Instructions for gaining access to the questionnaire can be found <u>here</u> For general CMIP5 related questions please email <u>cmip5-helpdesk@stfc.ac.uk</u>								
	(CMIP5 Model Metadata						
Model Centre Metadata E	ntry							
Choose your centre from below:								
OBCC	○ CCCMA	○ смсс	CNRM-CERFACS					
CSIRO-BOM		ec-earth						
GCESS								
LASG-CESS	C LASG-IAP		Омонс					
O MPI-M	O MRI	NASA GISS	O NASA-GMAO					
O NCAR	O NCAS	● NCC	O NCEP					
○ NIMR-KMA	O NOAA-GFDL	O NSF-DOE-NCAR	○ RSMAS					
		Choose						
L								
	Earth ST	uncted at the	Contro for Environmental					
Produced by metafo	and System Curator	for ti British Atmospheric Data Centre	he Data Archival Science And Technology Facilities council					

As of September, 2012, the "Metafor" Questionnaire had been used to document:

42 different model configurations,

used in over

600 simulations

from

17 institutions!

http://q.cmip5.ceda.ac.uk

Where is that information?

Three different ways to get to the same content:

1) Alongside data information in the ESGF search interface.

2) From the questionnaire itself (publication table at the bottom)

3) A new es-doc site coming soon.

MODEL	SIMULATION EXPER	IMENT PLATFORM				CMIP5 Model - MPI-ESM-LR (va		
Overview	Citations	Contacts	Properties	Components	Grids			
Project	CMIP5							
Short Name	MPI-ESM-LR					_		
Long Name	MPI Earth System	MPI Earth System Model running on low resolution grid						
Institute	Max Planck Institu	Max Planck Institute for Meteorology						
Funder	Bundesministeriu	Bundesministerium fuer Bildung und Forschung						
Release Date	2009-11-26 00:00	0:00						
Language	-							
Description	ECHAM6 & JSBA feedback of veget	CH / MPIOM & HAMOCC (ation and land use on the	coupled via OASIS3. For climate development is fi	experiments with the MPI-Es ully included, land cover cha	SM-LR /MR (com ange data are inc	pared to MPI-ESM-P): dynamic luded from external file, orbital		

ES-DOC - Viewer (v0.8.5

NB: ongoing problems with browsers ... keeping this as a beta

On twitter, follow @esdocumentation for public announcements as to when we think this will be ready (otherwise, just keep looking).

Currently we have viewers, but tools for user generated tables and comparisons will come with the next big release.

ES-DOC - Viewer (v0.8.5) | CMIP5 Model - HadGEM2-ES (v2)

MODEL SIMULATIO	ON EXPERIMENT	PLATFORM			CMIP5 Model - HadGEM2-ES (v.	2)
Overview	Citations	Contacts	Components	Grids		
Aerosols Emission & Concentration Model Transport Atmosphere Convection Cloud Turbulence Cloud Scheme Cloud Simulator Dynamical Core Advection Orography & Waves Radiation Atmospheric Chemistry Emission & Concentration Gas Phase Chemistry Emission & Concentration Gas Phase Chemistry Heterogen Chemistry Heterogen Chemistry Stratospheric Tropospheric Photo Chemistry Transport Land Ice Sheet Land Surface Albedo		Atmosphere > C verview he large-scale cloud agnosed from total inction. The width o urrounding grid point made by subdividir ersion of the Wilson ater, vapor, and rain roperties loud Scheme Attribu loud Scheme Attribu loud Scheme Attribu ub Grid Scale Water ub Grid Scale Water ub Grid Scale Water ub Grid Scale Water	Convection Cloud I scheme for liquid cloud moisture and liquid wate f this distribution is diagr is. A representation of thin and Ballard (1999) micro and Ballard (1999	Turbulence > Clou is that of Smith (1990), r potential temperature un losed from the variability e difference between cloud to three. HadGEM1 and ophysics scheme. Trans n physical process equa erer eme : Maximum-random (cloud Fraction, Diagnostic reatment : Yes fith Convection : Coupled ame : Symmetric Triangul rder : One Moment gnostic	d Scheme in which cloud water and cloud amount are sing a triangular probability distribution y of the moisture and temperature of the bud area fraction and cloud volume fraction I later models introduced an updated fers between water categories (ice, liquid tions using particle size information. Dverlap RH_crit I With Deep And Shallow ar Distribution	
		hort Title ull Title ocation hort Title ull Title	Smith 1990 Smith R. N. B., (199 general circulation 435-460. Wilson 1999 Wilson D. R., and S	90) A scheme for predictin model. Quarterly Journal S. P. Ballard (1999) A micro	g layer clouds and their water content in a of Royal Meteorological Society, 116, ophysically based precipitation scheme for the	
Vegetation Energy Balance	, ι	ocation		woden, quaneny Journal (Charles Market Control of Control	*

Credit: Mark Morgan, IPSL

National Centre for Atmospheric Science ×

Comparisons of specifics are possible

MODEL ID	INSTITUTION	LAND SURFACE CARBON CYCLE IMPLEMENTED?	OCEAN BIO CHEMISTRY (CARBON CYCLE) IMPLEMENTED?	AEROSOL SCHEME TYPE	PROGNOSTIC AEROSOL TREATMENT	LIST OF NUTRIENT SPECIES	△
GISS-E2CS-R	NASA Goddard Institute for Space Studies USA	False	False	bulk; modal	3D mass/volume mixing ratio for aerosols	Ocean BioGeoChem component not implemented	•
GISS-E2CS-H	NASA Goddard Institute for Space Studies USA	False	False	bulk; modal	3D mass/volume mixing ratio for aerosols	Ocean BioGeoChem component not implemented	
NorESM1-ME	Norwegian Climate Centre	True	True	other		Iron (Fe); Nitrogen (N); Phosphorus (P); Silicium (Si)	
NorESM1-M	Norwegian Climate Centre	True	True	other		Iron (Fe); Nitrogen (N); Phosphorus (P); Silicium (Si)	
CFSv2-2011	National Centers for Environmental Prediction	False	False	Aerosol component not implemented	Aerosol component not implemented	Ocean BioGeoChem component not implemented	U
GFDL-ESM2M	NOAA Geophysical Fluid Dynamics Laboratory	True	True	Aerosol component not implemented	Aerosol component not implemented	Iron (Fe); Nitrogen (N); Phosphorus (P); Silicium (Si)	Ŧ

(from the Metafor questionnaire, table by Gerry Devine, user controlled tables coming soon)

AGU December 2012 Slide 27

... but ...

Coverage is far from complete. Most (but not all) models are quite well described.

Simulation descriptions are less well done, and the conformance to experiments even less well done.

We have very little quality control information, of the model output, **or of these descriptions themselves.**

Peer Review of the Simulation Descriptions

- It was hard to generate the CMIP5 metadata content ... and some groups have put more effort in than others, and it shows in quality!
- Even a cursory look suggests a lot of missing material, and a lot of material that might have been erroneously copied.
- Questionnaire output has already been used in the AR5 drafts; process led to improvements in input material, but this has yet to be fed back round the loop ... so that all users get the benefit.
- Significant scope for modelling centres to do bilateral "checking of each others' work" ... but it'd be yet more work, and the rewards are as yet not visible ...
- The tooling has not yet been up to facilitating peer review, but the new comparison tools should expedite this (and show the worth of the effort in doing so).

Next Steps

We need to work on community expectations;

- how to use this information,
- how to validate it, and
- the role of peer review (who, when, how)?

We need to fix the problems we know we have in the underlying model

 in particular, the confusion between the scientific view of the code, and the software view of the code.

We need to put in place a governance structure to manage the future evolution.

 The hard work thinking about that is done, we expect to do this under the auspices of WGCM and the existing CF governance.

ES-DOC

New global activity, initially supported by both European and American projects; taking this further ...

New website and tool release imminent (days to weeks).

On twitter, follow @esdocumentation or @bnlawrence for public announcements

AGU December 2012 Slide 31 This talk should have been subtitled: **"Trust depends on understanding what has been done ... in detail!"** as much as on **"Who has done it"** (our traditional approach for modelling, but not for science in general)

We have made some steps with infrastructure to help, but the infrastructure will be useless without active engagement by the community, both in terms of creating and criticising/reviewing the required documentation

