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Summary

Outline

» Expectation: New science can be done based on ever
increasing compute resources

» Moores’s Law: Delivered ever increasing compute, but it’s nearly
over

» Post-Moore’s Law: We have to be smarter!
Kryder’s Law: is failing us too: We have to be smarter!
» Avoidance: Documentation to avoid duplication of effort
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Expectation
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Climate Scientists don’t respect big numbers!
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TALKING ABOUT LARGE NUMBERS 15 HARD
In experimental design, many underestimate:

» The energy demands and costs of computing associated with their experiments, and
> The difficulty in managing, disseminating, and utilising large volumes of data!

This is only going to become worse unless we do something about it — but this is not a popular

message!
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(Many versions of this slide exist, this one
from J. Kinter's presentation to the world
modelling summit 2008)
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Expectation
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Yoy enes (From “Infrastructure Strategy for the European Earth System
u R S o Modelling Community” 2012-2022, Mitchell et al, 2012.)
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Expectation
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History has given us exponential compute linked to exponential data ...

NCAR Storage and Compute
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Moore’s Law
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Faster Compute

1981: ICL Dist.Array.Proc. (20 MFlops)
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Moore’s Law
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Faster Compute

1981: ICL Dist.Array.Proc. (20 MFlops)
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Moore’s Law
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Faster Compute

1981: ICL Dist.Array.Proc. (20 MFlops)
T

Slide content courtesy of Arthur Trew: ‘epCC| @
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Moore’s Law
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Moore’s Law and Friends

Moore’s Law

More often misquoted and misunderstood:

» Original, Moore, 1965: The complexity for minimum component costs
has increased at a rate of roughly a factor of two per year.

» House (Intel) modified it to note that: The changes would cause
computer performance to double every 18 months

» Moore (Modified 1975): The number of transistors in a dense integrated
circuit doubles about every two years

Dennard Scaling

» The performance per watt of computing is growing exponentially at
roughly the same rate (doubling every two years).

» (Increasing clock frequency as circuits get smaller, but this stopped
working around 2006, too much power too small, means meltdown!)
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Moore’s Law
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten

I

@ National Centre for The end of climate modelling as we know it @ U"'VETS'WOf

Atmospheric Science Bryan Lawrence - UoR, 01 Mar 19

Reading



Moore’s Law
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Moores’s Law

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistos
This advancement is important as other aspects of technological progres:
strongly linked to Moore's law.

on integrated circuif

doubles approximately every two year
uch as processing speed or the price of electronic products
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Data source: Wikipedia (https:/en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

https://en.wikioedia.ora/wiki/Transistor count

Licensed under CC-BY-SA by the author Max Roser.
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Moore’s Law
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Moores’s Law
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https://www.yaabot.com/31345/quantum-computing-neural-chips-moores-law-future-computing/
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Moore’s Law
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Moore’s 2nd Law aka Rock’s Law

» The cost of a semiconductor chip fabrication plant doubles every four
years.

» Noyce, 1977: “...further miniaturization is less likely to be limited by the
laws of physics than by the laws of economics.”

» ...to shift resources (including R&D)

T ——— to the 14 and 12nm efforts where
..most of their chip customers ...are

planning to stay with the current-gen

Personal Tech

GlobalFoundries scuttles 7nm chip

plans claiming no demand architectures and squeeze
AMD promptly dumps it and hires TSMC for next- performance out by other means
gen chips :

By Shaun Nichols in San Francisco 27 Aug 2018 at 23:55 180 SHARE A

> 7nm is expensive, it's cheaper and easier to improve the performance
and density of 12nm, and hardware accelerators and custom chips ...

National Centre for The end of climate modelling as we know it U"'VEI’S"YOf
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Moore’s Law
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https://waw.nextplatform.com/2019/02/05/the-era-of - general-purpose- computers-is-ending/
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Moore’s Law
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The Evolving Moore’s Law

40 years of Processor Performance
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Moore’s Law
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Moore’s Law
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Power Consumption and Performance
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Post-Moores

What now then?

No more advances for free on the back of computer hardware
improvements and relatively little pain! Need to “resort” to

Maths
Algorithms
Customised Hardware
Software Solutions for performance, portability, and productivity.
Avoidance and Sharing

No more free lunch, a very different climate modelling world!
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Post-Moores

Summary
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Smarter Maths’? Techmques'

Parallel Time-Stepping

Not radical (in principle):
Xiv1(z,y,2,t) = f(Xi—1,X¢)

The function f can involve
several steps (iterates) or some
sort of prediction/correction.

Predictor:
Corrector:

Xf+1 = fp(xtflaxt)
Xip1 = fe(XP ) +Xe)

There is scope to do some of this
in parallel with several methods
discussed in the literature.

Parallel in Time

Quite radical:
NAT

Predict using a coarse model
with long timesteps. Correct in
parallel with a finer resolution
model.

Some experiments in the
literature ...

National Centre for
Atmospheric Science
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Smarter Maths? - Adaptlve Grids

If we can’t have ever increasing uniform grids:
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http://www-personal.umich.edu/~cjablono/amr.html
10.2140/camcos.2015.10.121

Smarter Maths? - Adaptive Grids

If we can’t have ever increasing uniform grids:

Pseudocolor
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Jablonski: http://www-personal.umich.edu/~cjablono/amr.html
& McCorquodale et al, 2015, 10.2140/camcos.2015.10.121
—
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Post-Moores Summary
(e]e]

Expectation

Gratuitous “robots are coming” image

Expect ML and Al to have
major implications for both

» HPC architectures, and

» Algorithms, in use before,
during, and after simulation
(analytics)!
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Post-Moores
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Growing impact of Machine Learning and Atrtificial Intelligence

Initial emphasis on climate services, parameter
estimation (for parameterisations) and emulation
(potentially avoiding avoid long spin-up runs).

Two interesting examples contributed to the
Gordon Bell competition this year:

» Preconditioning implicit solvers using artificial
intelligence — ground breaking (!) simulations of
earthquakes and building response : Ichimura et
al 2018.

b) Seismic response of city

Gratuitous “robots are coming” image 2
l Buildings 4“
1)

structures

Expect ML and Al to have
major implications for both
» HPC architectures, and

» Algorithms, in use before, > Exascale Deep Learning for Climate Analytics -

during, and after simulation Extracting weather patterns from climate
simulations: Kurth et al 2018, co-winner of 2018
Gordon Bell prize.

(analytics)!
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Post-Moores

0000 @00

Using machine learning to bypass calculations

Using machine learning to build temperature-based ozone parameterizations
for climate sensitivity simulations. Nowack, Braesicke, Haigh, Abraham,
Pyle, and Voulgarakis (2018): doi:10.1088/1748-9326/aae2be

Model
Input features " = Output
SR Machine learning
X ormalzation Apply mapping Y
t-1 Fit regression function Y = f{X) t
Te ture Dimension o ding roti
N ... ... - linear: Ridge/Lasso regression oo s b
bireitge (pca) - nonlinear: Random Forest, Neural Network
- eross-validation on training set

Temperature
50 80

C 0, 220

‘P"//——\/—\ﬁ

905 60S 305 EQ 30N 60N 90N
Latitud

Alntude
N l

L

\

l

Altitude

905 605 305 EQ 30N 6ON 90N

Latitude

> “...the regression reliably predicts three-dimensional ozone distributions at
monthly to daily time intervals.”
> “an important stepping stone towards a range of new computationally efficient

methods to consider ozone changes in long climate simulations ...”
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https://doi.org/10.1088/1748-9326/aae2be

Use of ML in climate needs care (no surprises there!)

Using Machine Learning to Parameterize Moist Convection: Potential for
Modeling of Climate, Climate Change, and Extreme Events. O’Gorman and

Dwyer (2018): 10.1029/2018MS001351

(8) Trained on each climate separatety

Fractional change (%K ')

Fractional change (%K)

Original schame
— — — Random forest

P
y; A

{b) Trained on combined climales

60

-30 ] 3

(¢} Trained on control climate

60

-60 -30 o a0 80

-30 o 3
Latitude (degrees)

60 30 0 w60
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» Random-forest parameterization of convection gives accurate GCM simulations
of climate and precipitation extremes in idealized tests

> Climate change captured when trained on control and warm climate, or only on
warm climate, but not when trained only on control climate

National Centre for
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16 GB HBM2
1900 GB/s HBM2
300 GBs NVLink

Vector Processors on Intel Google’s Tensor Programming VU
Zeon Unit GPUs from NVI-DI;A'} and AMD
'\f)mmmm LB T

Vector Processing Units from 2323 =8
NEC Server chips based on ARM
designs

FPGA from many sources

The end of Moore’s Law means more specialisation: all with very
different programming models!
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Even more complicated Hardware/Software Co-Design

Scaling Datacenter Accelerators With Compute-Reuse Architectures
Fuchs and Wentzlaff, 10.1109/ISCA.2018.00038

=&- Transistor Density e
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> Observed that while the future for compute and transistors is hitting a
physical wall, the same is not yet true of memory (both “normal” and
“storage class”)
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Post-Moores

Even more complicated Hardware/Software Co-Design

Scaling Datacenter Accelerators With Compute-Reuse Architectures
Fuchs and Wentzlaff, 10.1109/ISCA.2018.00038

== Transistor Density

—~ =®- Storage Density i Jooku DMA Engine
a 4+ Accelerators in TopS00 SO nput
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Compute-Reuse Storage
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> Observed that while the future for compute and transistors is hitting a
physical wall, the same is not yet true of memory (both “normal” and
“storage class”)

» Accelerate by re-using (stored) previous computations.
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Post-Moores

What about software?

The Hardware is in Place and
~Then A Miracle Occurs

\ SNAP

L Scalable Code,
Network Infrastructure,
Application Environments,
‘3

& Parallel Libraries
Will appear with little lead time!

e vl

More computing? “.
Different computing? ‘ k
Bigger ensemblest
No problem!

Some people have a very naive idea about the relationship between
the hardware and the software!
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Post-Moores
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Too many levels of parallelism

Vector Units (on chip)

Parallelism Across Cores

Shared Memory Concurrency

Distributed Memory

Numerical Method Concurrency
Internal Component Concurrency
Coupled Component Concurrency

1/10 and Diagnostic Parallelism

(Storage System Parallelism)

National Centre for The end of climate modelling as we know it University of
Atmospheric Science Bryan Lawrence - UoR, 01 Mar 19 Read'“g



Post-Moores
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Too many levels of parallelism

Vector Units (on chip)

- SRAM, expensive Cost/mm?
[ s\
n 3D-DRAM, High B/W, Low Density

SCML L/S vs. R/W

Parallelism Across Cores
Shared Memory Concurrency

Distributed Memory

Numerical Method Concurrency

Internal Component Concurrency
NAND, Low $/mm2

Nearly everything is processor/system dependent!
(except green layers on left).

Coupled Component Concurrency

1/10 and Diagnostic Parallelism

(Storage System Parallelism)

Entirely new programming models are likely to be necessary, with
entirely new* constructs such as thread pools and task-based
parallelism possible. Memory handling will be crucial!

*
New in this context!

National Centre for The end of climate modelling as we know it University of
NA"tmosphenc Science Bryan Lawrence - UoR, 01 Mar 19 Readlng




Post-Moores
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Software changing
slowly & slowing!

Hardware changing
rapidly & accelerating!

How far is it between our scientific aspira-
tion and our ability to develop and/or rapidly
adapt our codes to the available hardware?
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Post-Moores
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. Route 1: The Massive i ! Route 2 Incremerital

Edifice ~ Advances

» No group has enough effort
to do all the work needed.

» No group has all the
relevant expertise.

» The peril of the local
minimum

> Any given span/leap may

not be sufficient to cross the

next gap!

National Centre for The end of climate modelling as we know it U"'VETS'WOf
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Post Moores ost-| S Summar
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Route 1: The Massive Route 2: Incremental
Edifice Advances

> No group has enough effort ~ » The peril of the local
to do all the work needed. ‘ minimum

» No group has all the > Any given span/leap may
relevant expertise. not be sufficient to cross the |

%, I _— next gap!

» Share Requirements; Share Development.
» Define Interfaces and Connections.
FJ L R T
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Expectation Moore’s Law Post-Moores Post-Kryders Avoidance Summary
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Science Code

Defined Interfaces and Contracts
ngh Level Libraries and Tools

Bow g1 Defined Interfaces and Contracts

Libraries and Tools
Defined Interfaces-and Contracts

Low-Level Libraries and Tools
Defined Interfaces and Contracts

Compilers , OpenMP, MPI etc
Hardware & Operating System

National Centre for The end of climate modelling as we know it g University of
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Post-Moores
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Why and What is a Domain Specific Language (DSL)?
| Why? 4 PP ——

2

» Humans currently produce
the best optimised code!

» Humans can inspect an
algorithm, and exploit
domain-specific knowledge
to reason how to improve
performance — but a compiler
or generic parallelisation tool

doesn’t have that knowledge.

Result: Humans better than

generic tools every time, but
it’s big slow task and mostly
not portable!

The end of climate modelling as we know it
Bryan Lawrence - 01 Mar 19
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Why and What is a Domain Specific Language (DSL)?

Why?

» Humans currently produce
the best optimised code!

» Humans can inspect an
algorithm, and exploit
domain-specific knowledge
to reason how to improve
performance — but a compiler
or generic parallelisation tool
doesn’t have that knowledge. ':,4;

> Result: Humans better than ’?
generic tools every time, but -
it’s big slow task and mostly
not portable!

-7
~

What?

» A domain specific compiler,
with a set of rules!

» Exploits a priori knowledge,

e.g.

>

» The same operations are

Operations are performed

over a mesh,
typically performed "‘é?
independently at each mesh f?‘ .
point/volume/element, l";' |
the meshes themselves P
typically have consistent Tt
properties.

> Leave a much smaller task for [
the humans!

Nat|ona| Centre for The end of climate modelling as we know it
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DSLs in the Wild — two major projects:

» GridTools (formerly Stella) » PSyclone (from Gung Ho)
Both are DSELs ... domain specific embedded languages.

ik oo Boe oo P B

- > Embedded in C++ > Embedded in Fortran o
. » Originally targeted finite > Originally targeted finite |
. difference lat-lon Limited element irregular mesh. g
& AreaModel. > Arecipe of optimisations |
» Backends (via human (via human experts) isused |
experts) mapped to the by PSyclone to produce J
science description via C++ targeted code.

templates
T i U E 5
In both cases the DSL approach aIIows mathematlcal experts to do :
their thing, while HPC experts do their thing, and the DSL provides a
separation of concerns. e

S ooy et oo

Nat|ona| Centre for The end of climate modelling as we know it U"'VEI’S"YOf
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Separation of Concerns

Separate the Natural Science from the Computational
Science (performance):

"PSyKAI"

Natural Computational
Science Science

Hartree Ce

Courtesy of Andrew Porter and Rupert Ford, STFC
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PSyclone Example: NEMOLite2D (shallow-water, finite-difference)

a K | . . .
ooy Code (& Single Timestep Algorithm:

Code metadata)

call invoke(

continuity(ssha_t, sshn_t, sshn_u, sshn_v,
PSyclone hu, hv, un, vn, rdt),
Parser

momentum_u(ua, un, vn, hu, hv, ht,
ssha_u, sshn_t, sshn_u, sshn_v),

Schedule momentum_v(va, un, vn, hu, hv, ht,
ssha_v, sshn_t, sshn_u, sshn_v),

AST
(abstract syntax,
tree)

bc_ssh(istp, ssha_t),

Expert and Arch. q
Dependent bc_solid_u(ua),

Transformations bc_solid_v(va),

bc_flather_u(ua, hu, sshn_u),
bec_flather_v(va, hv, sshn_v),

PSyclone Generator
(Modifies AST
and deparses) copy(un, ua),

copy(vn, va),

copy(sshn_t, ssha_t),

ilabl
Coggégbe next_sshu(sshn_u, sshn_t),
next_sshv(sshn_v, sshn_t)

Courtesy of Andrew Porter and Rupert
Ford, STFC
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PSyclone Example: NEMOLite2D (shallow-water, finite-difference)

Algorithm CK:drg?k
Code metadata) One of many Kernels:

subroutine continuity_code(ji, jj,
ssha, sshn, sshn_u, sshn_v, &

PSyclone hu, hv, un, vn, rdt, el2t)
Parser

implicit none

intent(in) 1]
intent(in)

AST ;

(abstract syntax, Schedule Do
tree) 1), intent(in) 1, sshn_u, sshn_v, &
hu, hv, un, vn
L rtmpl, rtmp2, rtmp3, rtmp4

Expert and Arch.

Traaz%?gd:tirgns rtmpl = (sshn_u(ji ,jj ) + hu(ji ,j3 )) *un(ji ,jj )
rtmp2 = (sshn_u(ji-1,31 ) + hu(ji-1,37 )) * un(]l 1,11 )
rtmp3 = (sshn_v(j1 ,33 ) + hv(31 ,33 )) *vn(31 ,31 )
rtmpd = (sshn_v(j1 ,33-1) + hv(31 ,33-1)) * vn(31 ,33-1)

PSyclone Generator
(Modifies AST ssha(j1,33) = sshn(j1,33) + (rtmp2 - rtmpl + rtmp4 - rtmp3) * &

and deparses) rdt / el2t(ji,33)

end subroutine continuity_code

Complabie (which conform to a model specific “data model” - i.e. IJK,
IKJ, KIJ, order)

Courtesy of Andrew Porter and Rupert
Ford, STFC
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PSyclone Example: NEMOLite2D (shallow-water, finite-difference)

After vanilla processing with PSyclone, the algorithm looks a
Algorithm c’;";j’g‘[‘k bit like this:
Code metadata)

j] = ssha%internal%ystart, ssha%internal%ystop, 1
do ji = ssha%internal%xstart, ssha%internal%xstop, 1

PSyclone call continuity_code(ji, jj,

Parser ssha%data, sshn_t%data,
sshn_u%sdata, sshn_v %data,

hu%sdata, hvs%sdata, un%data, vn%data,
rdt, sshn_t%grid%area_t)

AST
(abstract syntax, Schedule
tree)

do jj = ua%internal%ystart, ua%internal%ystop, 1
do ji1 = ua%internal%xstart, ua%internal%xstop, 1

Expert and Arch.
Dependent -all ne q
Transformations call momentum_u_code(ji, jj,

ua%data, un%data, vn%data,
hu%sdata, hvssdata, ht%data,
ssha_u%data, sshn_t%data,
Fsmgg%geﬂgll?‘m sshn_u%data , S8 hn_vsdata,
and deparses) un%gridstmask,
un%gridisdx_u,
un%gridsdx_v,
un%gridisdx_t,
Compilable un%sgridsdy_u,
Code un%gridsdy_t,
unsgri d%area_u,
un%gridsgphiu)

Courtesy of Andrew Porter and Rupert
Ford, STFC e
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PSyclone Example: NEMOLite2D (shallow-water, finite-difference)

" Kernel
Algorithm
Code Code (&
metadata)

An example of the “science agnostic” schedule:

GOSchedule [invoke= ’
PSyclone

Parser Constant loop bounds=True]
Loop[type= ,field space=
it_space= ]
Loop [type= ,field_space=
it_space= ]

’

AST
(abstract syntax, Schedule
tree)

KernCall continuity(ssha_t,sshn_t,
. sshn_u, sshn_v, hu, hv,un,vn,
Expert and Arch. rdt,area t) [mod inline=False]
Dependent . = o
Transformations Loop[type= ,field_space=
it space= ]

Loop [type= ,field_space=
PSyclone Generator

(Modifies AST it_space= ]
and deparses)

’

KernCall momentum u(ua,un,vn,hu,hv,ht,ssha_u,
sshn_t,sshn_u, sshn_v, tmask,
dx u,dx_v,dx_t,dy u,dy_t,
Cogggzble area_u,gphiu) [mod_inline=False]

Courtesy of Andrew Porter and Rupert
Ford, STFC
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PSyclone Example: NEMOLite2D (shallow-water, finite-difference)

Algorithm CKO%Z'E&
Code metadata)

Peyclons Transformations

Parser

Architecture specific transformations can be applied to
nodes in the schedule.

AST
(abstract syntax, Schedule
tree)

As of 2017, PSyclone supported:

. > Loop fusion
Expert and Arch.

and deparses)

De dent il
Tranalomations » Module in-lining of kernels
» OpenMP
P A g or » parallel do
>

Loop colouring

Compilable
Code

Courtesy of Andrew Porter and Rupert
Ford, STFC
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PSyclone Example: NEMOLite2D (shallow-water, finite-difference)

Kernel
C
metacate) An example of how the schedule changes after

transformations (before the Generator step):

ngﬁé%?e GOSchedule [invoke=

[OMP parallel]
[OMP do]
25} Loop [type= field space=
(abstract syntax, Schedule PLLyP 4 L_Sp
tree) it_space= 1
Loop [type= ,field space=
it_space= ]

,Constant loop bounds=True]

E: t and Arch. : .
Xpoesrpg?,dsprtc KernCall continuity code (ssha_t,sshn_t,sshn_u,
Transformations ...,area_t) [mod_inline=False]
[OMP do]
PSyclone Generator Loop [pre= rfield space=
(Modifies AST it_space= ]
and deparses) Loop[type= ,field space=
it_space= ]
KernCall momentum u_ code (ua,un,vn,hu,hv,
Compilable .,area_u,gphiu) [mod inline=False]

Courtesy of Andrew Porter and Rupert
Ford, STFC
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Whither the DSL?

m » DSLs are becoming more common across disciplines. l
» The Domains are more or less specific ...

» the more specific, the cleaner a domain specific separation of
concerns, but the larger the technical debt (maintaining the code
and the teams of experts for the backends

> the more generic, the less the DSL can do for you, and the less the
separation of concerns.

National Centre for The end of climate modelling as we know it U"'VETS'W"f
Atmospheric Sc lem:e - Bryan Lawrence - UoR, 01 Mar 19 Read |ng
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Whither the DSL?

» DSLs are becoming more common across disciplines. !

» The Domains are more or less specific ...
> the more specific, the cleaner a domain specific separation of
concerns, but the larger the technical debt (maintaining the code
and the teams of experts for the backends hch
» the more generic, the less the DSL can do for you, and the less the |

]
3
separation of concerns. E
|
R

b
i

» The holy grail is to add further separation of concerns inside the
DSL ...e.g. can we imagine a GridTools and a PSyclone front
end to a vendor managed intermediate DSL compiler?

» compare with MPI: successful because vendors manage their own |
specific backends with a defined API that we all work with to
develop our own libraries (e.g. GCOM, YAXT etc)!

-

-r

~

Nat|ona| Centre for The end of climate modelling as we know it U"'VEI’S"YOf
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A modest (?) step ...

12km

N1024
(from 2013)

One “field-year” — 26 GB One “field-year” — >6 TB

1 field, 1 year, 6 hourly, 80 levels 1 field, 1 year, 6 hourly, 180 levels
1x1440 x 80 x 148 x 192 1 x 1440 x 180 x 1536 x 2048

National Centre for The end of climate modelling as we know it U"'VETS'WOf
NAHT'T heric S e Bryan Lawrence - UoR, 01 Mar 19 Read Ing
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What about 1km? That’s the current European Network for Earth
System Modelling (ENES) goal!

Consider N13256 (1.01km, 26512x19884)):

» 1 field, 1 year, 6 hourly, 180 » 760 seconds to read one 760
levels GB (xy) grid at 1 GB/s

> 1x1440 x 180 x 26512 x > but it’s worse that that: 10
19884 = 1.09 PB variables hourly, > 220 TB/day!

Can no longer consider serial diagnostics, and even parallelised
is a challenge for the 1/0 system!

National Centre for The end of climate modelling as we know it UmVEVS'tYOf
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Real experience with Kryder’s Law!

Historical Storage Costs at STFC (Usable)

Kryder’s Law -
.’0 Tape Costs (beginning with T)
. & include factor of 2 as approx
» The assumption ¢ .‘,. adjustment for cost of slot
that disk drive 10°9 * Ll
. L)
density, also g ® Direct . -
known as areal & 10* 3 m SATA NAS RN
. . 3 * PanFs P2 St
density, will & e l" T
double every 8 10° § @ QB-SOF "y, ..*\*’N.
: V¥ Car-0S T e
thirteen months. 0040 R ey et
2 102{  T10KB L
E!-Ias|n t for some [, ok n ity
ime!) + T10KD
10! -

» The implication of
Kryder’s Law is
that as areal
density improves,
storage will » Each new generation of tape is cheaper, and price
become cheaper: stable over the lifetime.

» Tape has better technical future prospects than disk!

o o & 1 1 g
> Relative cost of disk storage going up: each new
generation of disk has a “shallower Kryder rate”.

National Centre for The end of climate modelling as we know it UmVETS't)’Of
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Parallelism in Storage - Getting to and From

Compute Cluster Staging Area Storage Cluster

Compute to
Compute 10/BB k
Nodes Nodes SSD Storage . SSD  Disk
Connection

Existing filesystems are limiting

» Storage Architecture is complex.
» Difficult to initialise models (takes too long to read and distribute initial

data)
> Difficult to get sufficient performance from hundreds of nodes writing to
a file system!
National Centre for The end of climate modelling as we know it E UanEfS'WOf
NA"(mOSPhe"C Sc'e“‘:em Bryan Lawrence - UoR, 01 Mar 19 Read |ng
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Earth System Data Middleware £ ssivace

User-level APls

Data-type aware Canonical

Format

Site-specific File system

back-ends ?/ |

and Site Internet
mapping - Yl i Archival

o

Key Concepts

» Applications work through existing application interfaces
(currently: NetCDF library)

» Middleware utilizes layout component to make placement decisions

» Data is then written/read efficiently avoiding file system limitations (e.g.
consistency constraints)

» Potential for deploying with an active storage management system.

National Centre for The end of climate modelling as we know it UmVE"S'tYOf
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In-Flight Parallel Data Analysis ( esiwace

An ensemble is a set of

simulations running different qmmmmmmmmmm-—- ROSE  pecoommmooooe-- 5
instances of the same E = i
numerical experiment. We do ' Y
this to get information about i XML

1

1

1

f XIOS Config:
uncertainty. - output &
-9 [Namelisti. ... reductions
Config-1 T

Dealing with too much
ensemble data
Instead of writing out all

ensemble members and
doing all the analysis later:

» Calculate ensemble
statistics on the fly.

e m - ————

-p |Namelist n ==
Config-2

> Only write out some -
-p |Namelist -~
ensemble members. Config-M

» (Which ones? A tale for
another day, see Daniel
Galea’s Ph.D work.)
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[e]e]e]e]o] lelele]

In-Flight Parallel Data Analysis ( esiwace

An ensemble is a set of

simulations running different =~ §T=TTTTTEEEEEs RGOSF

instances of the same

numerical experiment. We do

this to get information about peal  pesz  pebi  peb vl pord2

uncertainty.

e Gy Ee [ B ][]
CECE CECEE ECE EE

Dealing with too much [meat]  [me-az] mca2|
5] [

Instead of writing out all
ensemble members and
doing all the analysis later:

» Calculate ensemble
statistics on the fly.

1
i XI0S-Serverl XIOS-Server2 |
i H

This is a hard problem, currently experimenting with
50,000 cores on ARCHER ...
(with Lister, Cole, NCAS CMS)

ensemble data E
i

> Only write out some
ensemble members.

» (Which ones? A tale for
another day, see Daniel
Galea’s Ph.D work.)

National Centre for The end of climate modelling as we know it UmVETS't)’Of
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Climate Forecast Conventions and Data Model

Formats and Semantics

. . File Attribute
> A file format describes how bits

and bytes are organised in J7
some sequence on disk. , Dmension
a Atribute + isUnlimited: boolean
H v + length:int
> Storage Mlddleware .(el.g. ; Ereist e
NetCDF) has an implicit or -
explicit data model for what > )
things are stored in that file. Variabe /
+ name: string H
> R + type: DataTypes H
) ! «enumeration»
Scalar or 1- Ordered list DataTypes
D Aray ~._|of char
dimensions byte
defines short
Data Values |< shape of int
binaryarray float
> double
National Centre for The end of climate modelling as we know it E UmVETS't)’Of
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Climate Forecast Conventions and Data Model

Variable
CN::Data

Formats and Semantics s

1

» A file format describes how bits
and bytes are organised in
some sequence on disk.

«construct»
Field

«construct» «construct»
FieldAncillary CellMethod

«construct»
| DomainAxis

» Storage Middleware (e.g.
NetCDF) has an implicit or
explicit data model for what
things are stored in that file.

«concept»
Domain

«abstract» «construct»

> The Climate-Forecast cconsn>  Generic CellVeasure
conventions describe how — Construct
coordinates and variable o
properties are stored in A
N etC D F' «constructy «construct»
CoordinateReference DimensionCoordinate

» We have developed an explicit
Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., and Taylor, K.

data mOdeI SO that these can E.: A data model of the Climate and Forecast mleta?iata
conventions (CF-1.6) with a software implementation (cf-python
be used for any storage format. v2.1), Geosci. Model Dev., 10, 4619-4646,

https://doi.org/10.5194/gnd-10-4619-2017, 2017.

National Centre for The end of climate modelling as we know it U"'VEI’S"YOf
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CF Conventions in Action

print(t)

Field: air_temperature (ncvar\’%ta)

Data

Cell methods

Field ancils

Dimension coords:
: atmosphere_hybrid_height_coordinate(1l) = [1.5]
: grid_latitude(10) = [2.2, ..., -1.76] degrees
: grid_longitude(9)
Auxiliary coords:

Cell measures

: air_temperature(atmosphere_hybrid_height_coordinate(1),

grid_latitude(10), grid_longitude(9)) K

: grid_latitude(10): grid_longitude(9):

mean where land (interval: 0.1 degrees) time(1): maximum

: air_temperature standard_error(grid_latitude(10),

grid_longitude(9)) = [[0.81, ..., 0.78]] K
time(1) = [2019-01-01 00:00:00]

[-4.7, ..., -1.18] degrees
latitude(grid_latitude(10),
grid_longitude(9)) = [[53.941, ..., 50.225]] degrees_N

: longitude(grid_longitude(9),

grid_latitude(10)) = [[2.004, ..., 8.156]] degrees_E

: long_name=

Grid latitude name(grid_latitude(10)) = [--, ..., kappal

: measure:area(grid_longitude(9),

grid_latitude(10)) = [[2391.9657, ..., 2392.6009]] km2

@ National Centre for The end of climate modelling as we know it E UmVETS't)’Of

Atmospheric Science

Bryan Lawrence - UoR, 01 Mar 19
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CF Conventions in Action

Rotated pole example

Met Office oordinate(1),

Rotated qrid —

s Non—rotated grid ----
Mercator projection

Mercator projection

_Pole p‘ys'\t'\cm: 38.0N 190.0E Pole position: $0.0N 0.0E ne(1): maximum
P e ] ™ o S
g T H g P 1e(10),
Al R VR LT
Fofes ﬁaﬂ
ORI N
ototed "~ J?M e il T e 1.5]
st Y "»"g i ‘i“\y‘ ees
""*,r_\-;f{;g_ Y m‘ rees
AR
Y et ol il I 1] degrees_N
rolatad grid
Sreenwicn
degrees_E
Full RCM domain onits  Full RCM domain projected
own rotated lat-lon grid onto the regular lat-lon grid [--, ..., kappal
BLLU_1dLLlLUUE\LYU)J) — LLLOTYL.JOOI, ..., 4032.6009]] km?2
National Centre for The end of climate modelling as we know it E University of
Atmospheric Science | Bryan Lawrence - UoR, 01 Mar 19 Reading
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CF Conventions in Action

Rotated pole example

>rdinate(1),

Met Office
M .
.?OZ_@’,”” ; ! ; 3(1): maximum
P 2(10)
et 3 ,
Vo ’ﬁ‘—’
[~ /1
st [ .5]
equator ) ss
. zes
/
| degrees_N

]

legrees_E

I I r—
FU"R 675 700 725 750 775 800 85 B350 875 S00 925 950 975 1000 1025

own r --, ..., kappal

import cf
import cfplot as cfp
f=cf.read( 'cfplot_data/rgp.nc’)[0] .6009]] km?2
cfp.cscale( 'plasma')

N cfp.mapset(proj='rotated')
cfp.con(f)

National Centre for The end of climate modelling as we know it U"'VEI’S"YOf
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CF Conventions in Action

Rotated pole example

Met Office - IR >rdinate (1),
M
Pole p aon .
B aximum
-
=
b
| =
N
2 &
equatar (y) i
..
fibwe- 4
)
‘ i - es_N
: —
m{w 675 0 725 750 7% 800 825 B50 675 000 923 950 975 1000 1025
"
E

——
Full R 573 import cf
import cfplot as cfp
own re¢ - f=cf.read( 'cfplot_data/rgp.nc')[0] , kappal
import © .sn cscale('plasma’)

import c cip.con(f)

f=cf.rea

cfp.esca._, - , km2
N cfp.mapset(proj='rotated')

cfp.con(f)

National Centre for The end of climate modelling as we know it UmVETS't)’Of
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CF Conventions in Action

Rotated pole example

Met Office >rdinate (1),
Mo :
Fole B wn - R aximum
o Currently working on 4y
parallelisation of all these )
tools: 2y
ruinhd oS
aquator )
- (Heaps, Roberts, Hassell,
)
A = all NCAS)
i i ‘ ___ esN
oW &5 790 725 750 TS 800 825 BSD 673 00D 925 930 675 1000 1025
2]
B — _E
Full R 73 import cf
import cfplot as cfp
own re¢ - f=cf.read( 'cfplot_data/rgp.nc')[0] , kappal
f'“P"rt © cfp.cscale('plasma’)
;mptf)rt c cip.con(f)
cL.rea
cfp.esca__, ... . km2
cfp.mapset (proj='rotated’)
cfp.con( f)
National Centre for The end of climate modelling as we know it U'“VETS'WOf
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Semantic Storage Layer £ esiwace

File split following CFA conventions

Each object
is a valid

Architecture (with Massey & Jones, STFC)

» Master Array File is a NetCDF file containing dimensions and metadata
for the variables including URLs to fragment file locations

» Master Array file optionally in persistent memory or online, nearline, etc.
NetCDF tools can query file CF metadata content without fetching them

National Centre for The end of climate modelling as we know it U"We"S'tYOf
Atmosphem: S"e“‘:e - Bryan Lawrence - UoR, 01 Mar 19 Read Ing
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0
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The Logistics of Collaboration

» In HPC we know that the larger the number of cores, the more the communications cost ...
» these communications costs need to paid for large scale scientific collaboration too!
From experimental design, to the data request, the (ESGF) dissemination infrastructure, and to the

analysis systems; we need to invest more in the supporting infrastructure, and respect the
constraints — but this is not a popular message!

()

National Centre for The end of climate modelling as we know it UanE"S'tYOf
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Climate Scientists don’t respect big numbers!

CMIPG6 : Timescales, Volumes, Costs

» Designed without a budget.

» Designed without respect for the (energy/financial) cost — Does
anyone know of any other scientific endeavour of this scale
which has no clear cost/benefit analysis/justification?

» Designed without respect for infrastructure requirements.

> Advent of the WIP reflects acceptance that there are infrastructural
issues.

> As of today: we still don’t know the timing and/or volumes of
data delivery into the ESGF.

» This is obviously problematic for data movement, data
management, and the overall performance of the system.

»> “Download at home” did not work for CMIP5, yet there appears to
be no real understanding by the designer/user community as to the
consequences of the factor of ten in volumes expected for CMIP6.

The end of climate modelling as we know it Unlversutyof
Bryan Lawrence - UoR, 01 Mar 19 Read |ng
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Avoidance Summary
000000000
Climate Scientists don’t respect big numbers!

CMIPG6 : Timescales, Volumes, Costs
» Designed without a budget.

» Designed without respect for the (energy/financial) cost — Does
a

ne know of any other sgentific endeavour of this sgale
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> “Download at home” did not work for CMIP5, yet there appears to

be no real understanding by the designer/user community as to the
consequences of the factor of ten in volumes expected for CMIP6.
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Documentation types within ES-DOC

Project
design

Machine Performance
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Guillaume Levavasseur, IPSL.

National Centre for The end of climate modelling as we know it UnlverSItyof
Atmospheric Science | Bryan Lawrence - UoR, 01 Mar 19 Read ing



Numerical Experiments
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Requirements and Constraints
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Example: generated view of LUMIP-noFIRE experiment

laj

oFire (LUMIP)

historical land-only with no human fire land management

Description: Land surface model simulation. Same as land-hist except with fire management maintained at 1850 levels.
Start year either 1850 or 1700 depending on standard practice for particular model.

Rationale: To assess the relative impact of land cover and incremental land management change on fluxes of water, energy,
and carbon in combination with other LUMIP land experiments.

Requirements

Historical Land Use: Apply the global gridded land-use
forcing datasets to link historical land-use data and future
projections. This new generation of “land use

and includes updated inputs, higher spatial resolution, more
detailed land-use transitions, and the addition of important
agricultural management layers.

harmonization” (LUH2) builds upon past work from CMIP5,

Historical GSWP3 Meteorological Forcing: Apply Global
Soil Wetness Project phase three (GSWP3) forcing data for
offline land surface models running the LS3MIP historical
simulation land-hist is provided by the LS3MIP.

1850 Fire Management: Maintain 1850 levels of fire
management (anthropogenic ignition and suppression of
fire). If ignitions are based on population density, maintain
constant population density.

Historical land surface forcings except fire management:
Apply all transient historical forcings that are relevant for the
land surface model except for fire management.

All Land Management Active: All applicable land
management active in the land surface model configuration.

1850-2014 165yrs: Historical, pre-Industrial to present

1700-2014 315yrs: Historical, from 1700 to 2014.

LSM Configuration: Offline land surface model

SingleMember: One ensemble member

Not all properties shown, view generated using Python interrogating online esdoc repository.
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Avoidance
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The real core of CMIP is
exposed!

» DECK fundamental
experiments (piControl,
AMIP) as expected.

» DECK CO2 experiments
1pctCO2 and
abrupt-4xCQO2, again,
as expected

»> CMIP6 requirement:
historical, obviously

> Perhaps surprisingly:
SSP245 and SSP585
from ScenarioMIP

Note also isolation of OMIP

and important cross-MIP

roles of land-hist, past1000,
MIPS (purple dots) and their (shared) experiments (blue dots). piCLIm-control and

dcppC-forecast-addPinatubo.

Charlotte Pascoe
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DAMIP as seen by ES-DOC

Detection and Attribution MIP
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Experiments (blue dots), grouped by common forcing constraints (pink dots)
The three experiments with solid borders are used by DAMIP, but not defined by it.
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Avoidance

Avoiding Repeated Simulations
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Describing and Sharing

> |deas proceed via discussion to
plans, which can be more or
less formally documented.

» The more formally they are
documented, the more likely
that larger groups can buy into
a shared vision.

» A key part of shared

experiment design is agreeing
on model configuration and
expected outputs (variables
and temporal frequency) ...from
Stash to a formal data request,
and everything in between.
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Summary
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Climate Scientists don’t respect big numbers!

|- IOOTERA I0OPETA
| 100GIGA. OTERA
T ) iDPETA
r I0GIGA '.7 \} PETA
PERCEVED | ;
5, ',,ZEWOF “| TERA
% ~IGIGA
K A
%% ACTURL SIZE OF NUMBER —
o %, (LOG SCALE)

TALKING ABOUT LARGE NUMBERS 15 HARD
In experimental design, many underestimate:

» The energy demands and costs of computing associated with their experiments, and
> The difficulty in managing, disseminating, and utilising large volumes of data!

This is only going to become worse unless we do something about it — but this is not a popular

message!
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Summary

oeo

Summary

» Expectation: We need to recalibrate our expectations of future
compute.

» Moores’s Law: The end will deliver a Cambrian explosion of
hardware.

» Post-Moore’s Law: Being smarter: Crossing the chasm with
better maths and community software such as DSLs.

> Kryder’s Law: Being smarter: Much going on to help us deal
with both avoiding writing data, but if we have to have it,
handling it efficiently.

» Avoidance: Being smarter: ES-DOC project delivering on
methodology to share big experiments from research group
scale to CMIP scale — but we have to design and share!

We need to be investing in being smarter NOW ...
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Summary
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Scientific Smarts - What will we do then?

This will not yield the end of climate science, but will need to become
better at using the right tool(s) for the job, rather than treating
everything as a nail because we have a really cool hammer:

» More use of hierarchy of models;
» Precision use of resolution;

» Selective use of complexity;
>

Less use of “ensembles of opportunity”, much more use of
“designed ensembles”;

Duration and Ensemble Size : thinking harder a priori about what
is needed.

» Much more use of emulation.

v
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