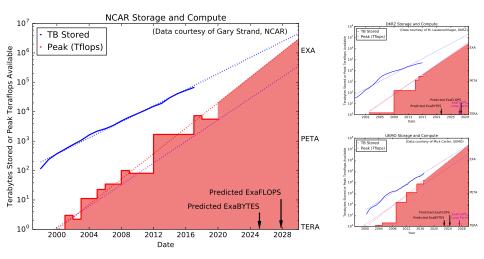
Challenges facing the modelling community The end of climate modelling as we know it

Bryan Lawrence

NCAS & University of Reading Departments of Meteorology and Computer Science

Exeter, 17 June 19

Outline		


- Expectation: New science can be done based on ever increasing compute resources
- Moores's Law: Delivered ever increasing compute, but it's nearly over
- Kryder's Law: is failing us too: We have to be smarter!
- Post-Moore's Law: We have to be smarter!
- Avoidance: Documentation to avoid wasted effort (& emissions)

Expectation		
000		

History has given us exponential compute linked to exponential data ...

Expectation 000			
Faster Com	npute		

1981: ICL Dist.Array.Proc. (20 MFlops)

2014: Archer (then 1.4 PFlops)

National Centre for Atmospheric Science

Expectation 000			
Faster Corr	npute		

1981: ICL Dist.Array.Proc. (20 MFlops)

2014: Archer (then 1.4 PFlops)

National Centre for Atmospheric Science

Expectation 000			
Faster Com	npute		

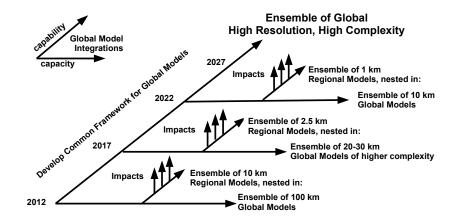
1981: ICL Dist.Array.Proc. (20 MFlops)

2014: Archer (then 1.4 PFlops)

Slide content courtesy of Arthur Trew:

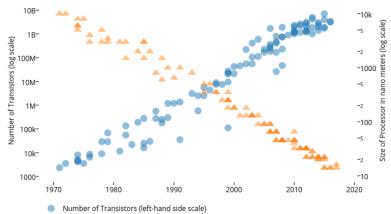
EPCC Advanced Computing Facility, 2014

From 1981, without Moore's Law



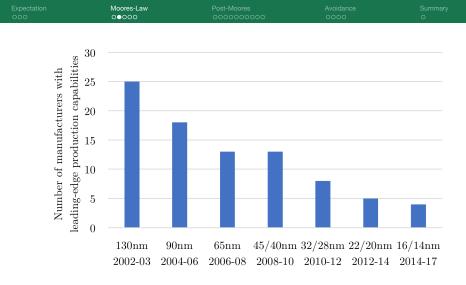
National Centre for Atmospheric Science

Expectation		
Climate Goals		


ENDERAN NETWORK FOR EARTH SISTEM HODELLING

(From "Infrastructure Strategy for the European Earth System Modelling Community" 2012-2022, Mitchell et al, 2012.)

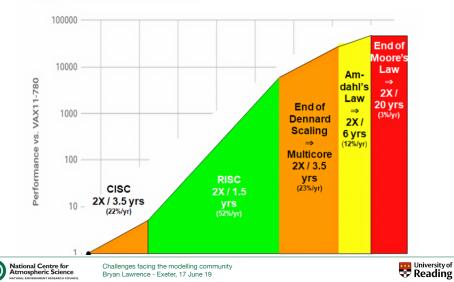
	Moores-Law ●0000		
Moores's Lav	M		

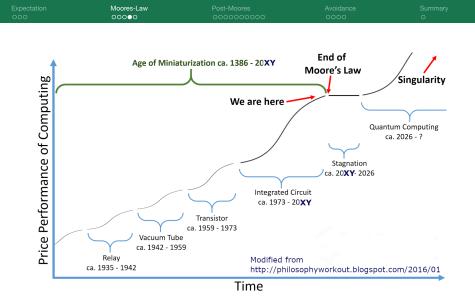

Processor Size (nano meters) (right-hand side scale)

https://www.yaabot.com/31345/quantum-computing-neural-chips-moores-law-future-computing/

National Centre for Atmospheric Science

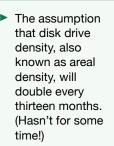
https://www.nextplatform.com/2019/02/05/the-era-of-general-purpose-computers-is-ending/



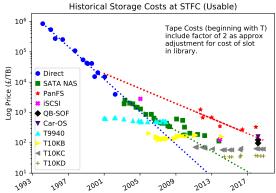

National Centre for Atmospheric Science

	Moores-Law ○○●○○		
The Evolvin	g Moore's Law		

40 years of Processor Performance



National Centre for Atmospheric Science


Moores-Law		

Real experience with Kryder's Law!

Kryder's Law

The implication of Kryder's Law is that as areal density improves, storage will become cheaper:

- Relative cost of **disk** storage going up: each new generation of disk has a "shallower Kryder rate".
- Each new generation of tape is cheaper, and price stable over the lifetime.
- Tape has better technical future prospects than disk!

National Centre for Atmospheric Science

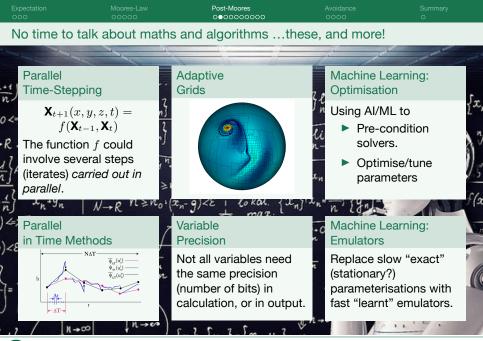
		Post-Moores ●000000000	
What now the	en?		

No more advances for free on the back of computer hardware improvements and relatively little pain! Need to "resort" to

Maths

Algorithms

Customised Hardware


Software Solutions for performance, portability, and productivity.

Avoidance and Sharing

No more free lunch, a very different climate modelling world!

Challenges facing the modelling community Bryan Lawrence - Exeter, 17 June 19

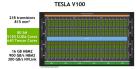
National Centre for

Atmospheric Science

Expectation	Moores-Law	Post-Moores	Avoidance	Summary	
000	00000	○○●○○○○○○○	0000	O	
From decodes of the come to a Combiner Fundation					

From decades of the same to a Cambrian Explosion

Vector Processors on Intel Zeon


Vector Processing Units from NEC

Google's Tensor Programming Unit

Server chips based on ARM designs

GPUs from NVIDIA and AMD

FPGA from many sources

The end of Moore's Law means more specialisation: all with very different programming models!

National Centre for Atmospheric Science

		Post-Moores ○○○●○○○○○○	
Too many le	evels of parallelis	n	

Vector Units (on chip)

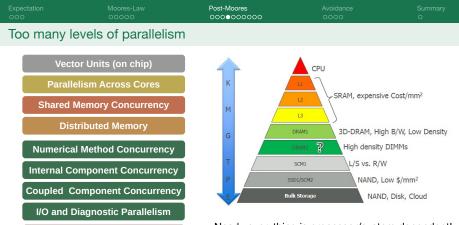
Parallelism Across Cores

Shared Memory Concurrency

Distributed Memory

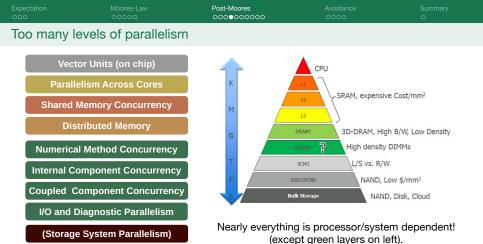
Numerical Method Concurrency

Internal Component Concurrency


Coupled Component Concurrency

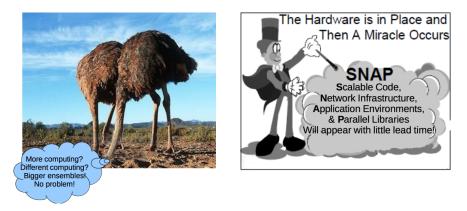
I/O and Diagnostic Parallelism

(Storage System Parallelism)



(Storage System Parallelism)

Nearly everything is processor/system dependent! (except green layers on left).


Entirely new programming models are likely to be necessary, with entirely new* constructs such as thread pools and task-based parallelism possible. Memory handling will be crucial!

* New in this context!

		Post-Moores 0000●00000	
What about	t software?		

Some people have a very naive idea about the relationship between the hardware and the software!

	Post-Moores		
	000000000		
		the second s	

Software changing slowly & slowing!

How far is it between our scientific aspiration and our ability to develop and/or rapidly adapt our codes to the available hardware?

National Centre for Atmospheric Science Challenges facing the modelling community Bryan Lawrence - Exeter, 17 June 19

Hardware changing rapidly & accelerating!

	Post-Moores	
	0000000000	

Science Code

How do we bridge the gap?

Compilers, OpenMP, MPI etc

Hardware & Operating System

National Centre for Atmospheric Science

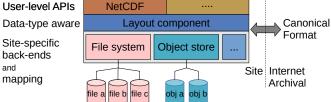
	Post-Moores	
	0000000000	

Crossing the Chasm: How to develop weather and climate models for next generation computers?

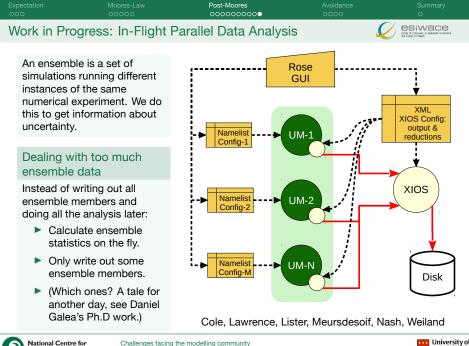
Lawrence, Rezny, Budich, Bauer, Behrens, Carter, Deconinck, Ford, Maynard, Mullerworth, Osuna, Porter, Serradell, Valcke, Wedi, and Wilson

https://doi.org/10.5194/gmd-11-1799-2018

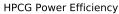
IS-ENES2 Deliverable 3.2

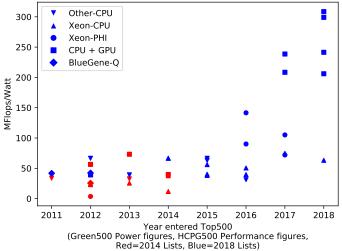


National Centre for Atmospheric Science


Key Concepts

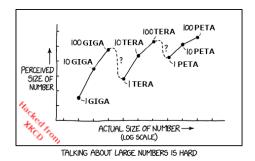
- Applications work through existing application interfaces (currently: NetCDF library)
- Middleware utilizes layout component to make placement decisions
- Data is then written/read efficiently avoiding file system limitations (e.g. consistency constraints)
- Potential for deploying with an active storage management system.


Challenges facing the modelling community Bryan Lawrence - Exeter, 17 June 19


Atmospheric Science

			Avoidance ●000		
Power Consumption and Porformance					

Power Consumption and Performance

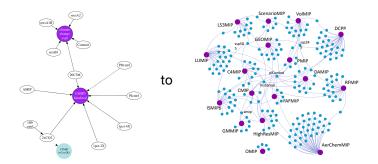


	Avoidance	
	0000	

Climate Scientists don't respect big numbers!

In modelling, many underestimate:

- The energy demands and costs of computing associated with their experiments, and so the need for energy efficient codes and computational environments,
- > The need for respecting energy costs in experimental design, and
- The difficulty in managing, disseminating, and utilising large volumes of data!


These issues are only going to become worse unless we do something about it!

	Avoidance	
	0000	

The CMIP Evolution: from CMIP3 to CMIP6

The Logistics of Collaboration

- In HPC we know that the larger the number of cores, the more the communications cost ...
- these communications costs need to paid for large scale scientific collaboration too!

From experimental design, to the data request, the (ESGF) dissemination infrastructure, and to the analysis systems; we need to invest more in the supporting infrastructure, and respect the constraints — but this is not a popular message!

			Avoidance	
Simulation	Years, Energy, an	d Planning		

Experiments have real physical costs

Most of us do not know the energy costs of our models!

- Balaji et al. (2017) CPMIP: Measurements of Real Computational Performance of Earth System Models in CMIP6. https://doi.org/10.5194/gmd-10-19-2017
- Requires quantification of "JPSY" – Joules per simulated year: via direct measurements or estimation (core-hours per simulated year and average system costs per core-hour).

Set real energy budgets for experiments (and MIPs)

Share plans and outputs!

- Exploit ES-DOC tools to define and share experiment plans.
- (See Pascoe et al, 2019, https://doi.org/10.5194/gmd-2019-98 and the published CMIP6 experiment docs: https://documentation.esdoc.org/cmip6/experiments.)
- The larger the experiment in energy terms, the more it needs rigorous justification and/or a big user community!

National Centre for Atmospheric Science

		Summary ●
Summary		

- Expectation: We need to recalibrate our expectations of future compute.
- Moores's Law: The end will deliver a Cambrian explosion of hardware.
- Post-Moore's Law: Being smarter: Crossing the chasm with better maths and community software such as DSLs.
- Kryder's Law: Being smarter: Much going on to help us deal with both avoiding writing data, but if we have to have it, handling it efficiently.
- Avoidance: Being smarter: ES-DOC project delivering on methodology to share big experiments from research group scale to CMIP scale — but we have to design and share!

We need to be investing in being smarter NOW ...

