
Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

The ExcaliData Implementation of Active

Storage. An opportunity for Lustre?

ExcaliData is an Excalibur Cross Cutting Project
Excalibur is a UK exascale readiness programme

https://excalibur.ac.uk

Bryan Lawrence
(and many more, see next slide)

16th June 2023

https://excalibur.ac.uk

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

ExcaliData — Active Storage Authors and Partners

ExcaliData is a big project, active storage is one
part of it, where the key participants are:

Bryan Lawrence (UoR & NCAS)

Jean-Thomas Acquaviva (DDN)

Konstantinos Chasapis (DDN)

Scott Davidson (StackHPC)

Mark Goddard (StackHPC)

David Hassell (UoR & NCAS)

Grenville Lister (UoR & NCAS)

Valeriu Predoi (UoR & NCAS)

Matt Pryor (StackHPC)

Stig Telfer (StackHPC)

Funding via

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Outline and Why me, here, now?

Co-Design: Not just about HPC Simulation, about analysis too!
There is an opportunity here for big science and big lustre!

1 Intro
2 Science Context
3 Active Storage

Concept
Chunking
Workflow
Detail
Implementation
Requirements

4 Summary

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

We want to simulate our world

Image: from J. Lafeuille, 2006

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Everything is solved on a grid

Many points, integrated for years with
timestep of o(minutes)!

Given knowledge
of state of
- o(100) variables
at every grid point
for time t,
calculate
at every grid point
for every variable,
state at t +∆t.

Much complexity:

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

The Evolution of Resolution: A better global microscope!

Zooming in on
Horizontal Model Resolution
(These are global models,
this is just an illustration of resolution.)

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

The influence of resolution on simulations of

extratropical cyclones

As simulated by the Met Office
https://uip.primavera-h2020.eu/storymaps/extra-tropical-cyclones

https://uip.primavera-h2020.eu/storymaps/extra-tropical-cyclones

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Climate modelling: an exaflop and an exabyte challenge

Resolution

10-1

100

101

102

103

104

105

102104106 105 103

1km25km 100m100km

En
se

m
bl

e
m

em
be

rs
 (a

t s
am

e
SY

PD
)

[m]

Storage [B / variable]500T 50P5T50G500M

ARCHER2

Faster supercomputers
move the boundary

Program Optimization

or ML inside

5km 2.5km

resolved

processes
cyclone

storm

cloud

1.5km

ML on to
p m

ay

bre
ak th

e boundary

single simulation

The EVE target

or

CMIP6 HighResMIP

1990

2000

2010

Past Supercomputer

Frontiers
Here we cannot
compute – yet!

laptop-scale
compute

Atmosphere viewpoint adapted from Hoefler et al (2023)

Too slow
Too expensive

(Not actually straight lines,
but this IS a schematic)

variability
& uncertainty

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Excalidata and Active Storage are cross-cutting

Other big data challenges which should benefit from active storage:

Square Kilometre
Array (SKA),
Simulating turbulence,
and much more.

Picture Credits:

SKA Project

Imperial College

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Problem Statement

Exascale science requires access to increasingly large amounts of data

These data might not be located near to the compute resources

Moving data over the network, from storage to compute nodes, is costly

The cost can be thought of as

Time or CPU cycles taken to move the data (particularly for read
operations, which are always blocking, we can buffer or offload writes)
Network bandwidth used (and cost of ensuring the necessary fabric exists)
Energy consumed (to move the data)

Can we avoid some of that movement?

We could, if we could do some computation in storage!

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

What is Active (Computational) storage?

Nearly all storage systems now have lots of compute, it’s necessary for
error correction, and managing which bytes go where, but it’s basically
underused

JASMIN Quobyte storage system has (in 2021) 40PB usable storage
powered by 131 compute nodes (3460 cores)

For a long time now, people have been talking about utilising some of
that underused compute, by doing “some compute tasks in storage”.

Previous ideas have included shipping functions, VMs or containers

If I ship a VM/container, how do I know it is not going to do bad things to
the data and/or system?
How do I include complex systems in a workflow? How does this
VM/container/function fit into my greater workflow?

We limit ourselves to reductions (a la MPI), and we let the Dask workflow
tool handle the workflow (including identifying when we can use
reductions).

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

What is Active (Computational) storage?

Nearly all storage systems now have lots of compute, it’s necessary for
error correction, and managing which bytes go where, but it’s basically
underused

JASMIN Quobyte storage system has (in 2021) 40PB usable storage
powered by 131 compute nodes (3460 cores)

For a long time now, people have been talking about utilising some of
that underused compute, by doing “some compute tasks in storage”.

Previous ideas have included shipping functions, VMs or containers

If I ship a VM/container, how do I know it is not going to do bad things to
the data and/or system?
How do I include complex systems in a workflow? How does this
VM/container/function fit into my greater workflow?

We limit ourselves to reductions (a la MPI), and we let the Dask workflow
tool handle the workflow (including identifying when we can use
reductions).

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Dask

A task-based
parallel computing
library for Python.

Dask partitions
work into
computational
chunks.

Each computational chunk may map to multiple storage chunks, each of
which will consist of a bunch of blocks in storage.

Scheduler analyses workflow to create a task graph and allocates task to
the available computing elements

Objective: Manipulate the task graph to push some tasks into the
storage!

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Dask

A task-based
parallel computing
library for Python.

Dask partitions
work into
computational
chunks.

Each computational chunk may map to multiple storage chunks, each of
which will consist of a bunch of blocks in storage.

Scheduler analyses workflow to create a task graph and allocates task to
the available computing elements

Objective: Manipulate the task graph to push some tasks into the
storage!

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Storage Chunks

Consider a simple 6 × 4 × 4 grid:

1 2 3

7 8 9

13 14 15

43

67

19 20 21

4 5 6

10 11 12

16 17 18

22 23 24

96
90

Y

X

T

0
..
3

0.
.3

0..5

Data is written one chunk at a time (the size of a chunk is under user
control). Deeper down the stack one chunk might be multiple blocks.

For HDF/NetCDF/Zarr, data is also read into memory one chunk at a time.

Consider a chunk size of 6 and what happens if we we want to get a map
(XY data) at a specific time (T) which corresponds to elements (2,3,8,9)

– we need to read two chunks, and extract what we need.

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Storage Chunks

Consider a simple 6 × 4 × 4 grid:

1 2 3

7 8 9

13 14 15

43

67

19 20 21

4 5 6

10 11 12

16 17 18

22 23 24

96
90

Y

X

T

0
..
3

0.
.3

0..5

Data is written one chunk at a time (the size of a chunk is under user
control). Deeper down the stack one chunk might be multiple blocks.

For HDF/NetCDF/Zarr, data is also read into memory one chunk at a time.

Consider a chunk size of 6 and what happens if we we want to get a map
(XY data) at a specific time (T) which corresponds to elements (2,3,8,9)

– we need to read two chunks, and extract what we need.

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Storage Chunks (cont)

The default chunking has a preferred access. If you are reading in the
direction you wrote, it will be efficient.

But much of the time we don’t do that.

What about alternatives?

51

54 66

88 89 90

1 2 3

4 5 6

75

25 26 27

76 77 78

28 29 30

13 14 15

37 38 39

40 41 42

16 17 18

Now nearly all ways of sampling into the cube along different routes than
the original will be approximately equally efficient (but chunk size and
dimensioning matter . . . a lot)!

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Storage Chunks (cont)

The default chunking has a preferred access. If you are reading in the
direction you wrote, it will be efficient.

But much of the time we don’t do that.

What about alternatives?

51

54 66

88 89 90

1 2 3

4 5 6

75

25 26 27

76 77 78

28 29 30

13 14 15

37 38 39

40 41 42

16 17 18

Now nearly all ways of sampling into the cube along different routes than
the original will be approximately equally efficient (but chunk size and
dimensioning matter . . . a lot)!

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Why do we care about chunks?

When we read data, we read data one chunk at a
time

If compressed, the chunk is uncompressed, then

We extract the slice we want from the chunk.

In the (green) map example, with the two toy
chunking strategies shown, EITHER

read two chunks, decompress two chunks,
extract two slices, build map, OR
read one chunk, decompress one chunk, extract
one slice build map

We might have other interesting chunk properties
too: missing data, filters etc.

Now extend our thinking from “extracting data
for a map” to “doing some calculation” . . .

1 2 3

7 8 9

13 14 15

43

67

19 20 21

4 5 6

10 11 12

16 17 18

22 23 24

96
90

51

54 66

88 89 90

1 2 3

4 5 6

75

25 26 27

76 77 78

28 29 30

13 14 15

37 38 39

40 41 42

16 17 18

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Why do we care about chunks?

When we read data, we read data one chunk at a
time

If compressed, the chunk is uncompressed, then

We extract the slice we want from the chunk.

In the (green) map example, with the two toy
chunking strategies shown, EITHER

read two chunks, decompress two chunks,
extract two slices, build map, OR
read one chunk, decompress one chunk, extract
one slice build map

We might have other interesting chunk properties
too: missing data, filters etc.

Now extend our thinking from “extracting data
for a map” to “doing some calculation” . . .

1 2 3

7 8 9

13 14 15

43

67

19 20 21

4 5 6

10 11 12

16 17 18

22 23 24

96
90

51

54 66

88 89 90

1 2 3

4 5 6

75

25 26 27

76 77 78

28 29 30

13 14 15

37 38 39

40 41 42

16 17 18

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

A simple reduction workflow: mean

Taking a mean using four
computational chunks:

four lots of data re read from
storage

four means are taken

means are aggregated result
is calculated from the partial
means

requires reading all the data
from the storage system,
moving it into the compute
node(s).

(see also Blelloch algorithm.)

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

An active storage reduction workflow: mean

(This time with three, and note direction of flow has changed)

allocate arrays to (computational) chunks

send index information to processes

read chunk to
processor 1

mean chunk 1

read chunk 2 to
processor 2

mean chunk 2

read chunk 3 to
processor 3

mean chunk 3

(aggregate partial means)

mean partial means

return result

allocate arrays to (computational) chunks

send index information to processes

send index and "mean"
to storage

storage calculates
mean chunk 1

read chunk 1 mean
to processor 1

send index and "mean"
to storage

storage calculates
mean chunk 2

read chunk 2 mean
to processor 2

send index and "mean"
to storage

storage calculates
mean chunk 3

read chunk 3 mean
to processor 3

(aggregate partial means)

mean partial means

return results

For, say a 3GB array, instead of reading 1 GB to each processor, we are reading a
few bytes to each processor — much less data movement!

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

An active storage reduction workflow: mean

(This time with three, and note direction of flow has changed)

allocate arrays to (computational) chunks

send index information to processes

read chunk to
processor 1

mean chunk 1

read chunk 2 to
processor 2

mean chunk 2

read chunk 3 to
processor 3

mean chunk 3

(aggregate partial means)

mean partial means

return result

allocate arrays to (computational) chunks

send index information to processes

send index and "mean"
to storage

storage calculates
mean chunk 1

read chunk 1 mean
to processor 1

send index and "mean"
to storage

storage calculates
mean chunk 2

read chunk 2 mean
to processor 2

send index and "mean"
to storage

storage calculates
mean chunk 3

read chunk 3 mean
to processor 3

(aggregate partial means)

mean partial means

return results

For, say a 3GB array, instead of reading 1 GB to each processor, we are reading a
few bytes to each processor — much less data movement!

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Some gory details (1): the interface

Each computational chunk is operating on many storage chunks, but we need to
know quite a lot about each storage chunk to do the calculations - knowledge held
by the application, but not the storage, unless we tell it.

«abstract»
missing descriptor

fillvalue
missing
min_valid_value
max_valid_value

«enum»
dtypes

float32
float64
integer64
integer32

«interface»
reduce_chunk

file: string
offset: int
size: int
compression: int
filters: int
missing: missing
dtype: dtypes
shape: tuple
order: character
chunk_selection: tuple
method: string

«tuple»
missing

«sequence of bytes»
storage
chunk

«concept»
missing
values

instance
of

has
implicit
dtype
from

may contain

has implicit
dtype
from

described by

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Some gory details (2A): storage requirements

Vocabulary

Storage Service (OSS):
An (object) service which
provides access to the
storage system, takes
data and writes it, or
takes a read request and
returns a series of
blocks.
Storage Target (OST): An
(object) storage target
used by an OSS or a
kernel to actually write to
one or more disks (e.g in
a RAID system).

OSS receives and serves entire chunks:

Single Server Pattern

Storage-Anode

OST3

OST2

OST1

OSS

Application

Storage
Client

sequence
of

storage
chunks

LAN traffic
sequence of

blocks

This will work, OSS receive a series of blocks which

constitute a chunk.

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Some gory details (2B): storage requirements

Vocabulary

Storage Service (OSS):
An (object) service which
provides access to the
storage system, takes
data and writes it, or
takes a read request and
returns a series of
blocks.
Storage Target (OST): An
(object) storage target
used by an OSS or a
kernel to actually write to
one or more disks (e.g in
a RAID system).

The client is responsible for striping a chunk across
OSTs:

No OSS Pattern

Storage-B

node

OST3

OST2

OST1

Application

Storage
Client

sequence
of

storage
chunks

LAN

LAN

LAN

This will not be worth doing, a chunk is broken up across

OSTs, and needs to be re-assembled in the client before

reduction.

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Implementing Active Storage — S3

Single Server (S3)

S3 + Middleware Server
(Reductionist)

node

OST3

OST2

OST1
S3

Server
Application

Storage
Client

sequence
o f

storage
chunks

or results

Write
sequence of

objects

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Implementing Active Storage — S3

Single Server (S3)

S3 + Middleware Server
(Reductionist)

node

OST3

OST2

OST1
S3

Server

Reductionist

Does the
computations

Application

Storage
Client

2. reads
chunks

sequence
o f

storage
chunks

or results

Write
sequence of

objects

3. Returns
result

1. Request
computation

on chunk

Reductionist: https://github.com/stackhpc/reductionist-rs

https://github.com/stackhpc/reductionist-rs

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Implementing Active Storage — Reductionist HTTP API

Request:

POST / operations /{operation}
Headers :

Authorization : Basic =auth_token=
Content−Type: application / json

Body:
{
"source" : "https : / / s3 . server . address / ,
"bucket" : "my−bucket" ,
"object " : "path / to / object " ,
"dtype" : " int32" ,
"byte_order" : " l i t t l e " ,
" offset " : 0,
" size " : 128,
"shape" : [20, 5] ,
"order" : "C" ,
" selection " : [[0, 19, 2] , [1, 3, 1]] ,
"compression" : {" id " : " z l ib "},
" f i l t e r s " : [{" id " : " shuffle " , "element_size"

: 4}] ,
"missing" : {"missing_value" : 42}
}

Response:

HTTP/1 .1 200 OK
Headers :

Content−Length : 4
Content−Type: application / octet−stream
x−activestorage−dtype : int32
x−activestorage−byte−order : l i t t l e
x−activestorage−shape: []
x−activestorage−count : 1

Body:
42

How do we find the offset for the
chunk operation?

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Implementing Active Storage — Reductionist HTTP API

Request:

POST / operations /{operation}
Headers :

Authorization : Basic =auth_token=
Content−Type: application / json

Body:
{
"source" : "https : / / s3 . server . address / ,
"bucket" : "my−bucket" ,
"object " : "path / to / object " ,
"dtype" : " int32" ,
"byte_order" : " l i t t l e " ,
" offset " : 0,
" size " : 128,
"shape" : [20, 5] ,
"order" : "C" ,
" selection " : [[0, 19, 2] , [1, 3, 1]] ,
"compression" : {" id " : " z l ib "},
" f i l t e r s " : [{" id " : " shuffle " , "element_size"

: 4}] ,
"missing" : {"missing_value" : 42}
}

Response:

HTTP/1 .1 200 OK
Headers :

Content−Length : 4
Content−Type: application / octet−stream
x−activestorage−dtype : int32
x−activestorage−byte−order : l i t t l e
x−activestorage−shape: []
x−activestorage−count : 1

Body:
42

How do we find the offset for the
chunk operation?

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

File Formats

hdf

hdf-f i lezarr

HDF-API

probably(?)
cached in

application
memory

we're
currently
using a

kerchunk
based hack

Metadata

B-Tree

ChunkRepo

Metadata
File

Chunk
Files

Zarr-API

Index

built in
application

memory

Application

indexes

1. queries for
chunk

address

2. gets
chunk

address

3. read
chunk

(-2. get layout)(-1. build index) 1. get chunk
address

2. read file
(chunk)

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

POSIX

Single Server Pattern

Storage-Anode

OST3

OST2

OST1

OSS

Application

Storage
Client

sequence
o f

storage
chunks

traffic
sequence of

blocks

The big question is how to get the request through the storage stack?

Solution: Hack ioctl.

(Implemented first in Fuse for proof of concept, then in DDN Infinia)

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

POSIX

Single Server Pattern

Storage-Anode

OST3

OST2

OST1

OSS

Application

Storage
Client

sequence
o f

storage
chunks

traffic
sequence of

blocks

The big question is how to get the request through the storage stack?

Solution: Hack ioctl.

(Implemented first in Fuse for proof of concept, then in DDN Infinia)

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

HDF5 files, chunks and striping

Reading: chunk locations are known
to HDF-library, and can be extracted
by application and active storage (a
la kerchunk), but

Writing: File system doesn’t know
how to align them with OSS when
writing them.

Multiple OSS Pattern

Storage-C

OSS2

OSS1

node

Important that
chunks are
aligned with OSS

OST4

OST3

OST2

OST1

chunk2

chunk1

Application

Storage
Client

sequence
o f

storage
chunks

LAN

LAN

Much easier to handle chunk alignment with Zarr!

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Active Storage Server – Compute Requirements

Can address a byte range within the file (a chunk) and fill a buffer with
those bytes

(return error if buffer can’t support decompressed chunk.)
(respect float description and return error if unrecognised.)

Support for specific filter and decompression algorithms (those
supported by Zarr and netcdf).

(Return error for unrecognised filter and/or decompression.)

Support for the defined operations: mean, sum, max, min, count (more
could be added provided they were reductions); applied to a slice within
the buffered array and respecting missing data.

(Return error for unrecognised operation.)
(Return error if slice operation is out of bounds or misunderstood.)
(Return error for unsupported missing description.)

(We have discussed a streaming version of this as well, but this is the
simplest version.)

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Active Storage - Client Side

Science Application (untouched!): any script written
in Python, utilising

CF-Python (climate forecasting domain specific
analysis library), which itself uses

Dask (provides flexible task-based parallelism from
threads to nodes).

In the current implementation we have modified
CF-Python to patch the Dask graph when it recognises
active storage to use the

PyActiveStorage middleware (handles computational
offload to storage and returns results).

to return the first computational reduction.
(Rather than what would otherwise be at the bottom of
the graph: a read and then the computation).

It is possible
to handle it all in Dask

without modification further up the

stack.

We have demonstrated that in a fork

of Dask, but
we wont try to push our

patches ups
tream until there are

some active storage servers

deployed for real.

https://ncas-cms.github.io/cf-python/
https://github.com/valeriupredoi/PyActiveStorage

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Active Storage - Client Side

Science Application (untouched!): any script written
in Python, utilising

CF-Python (climate forecasting domain specific
analysis library), which itself uses

Dask (provides flexible task-based parallelism from
threads to nodes).

In the current implementation we have modified
CF-Python to patch the Dask graph when it recognises
active storage to use the

PyActiveStorage middleware (handles computational
offload to storage and returns results).

to return the first computational reduction.
(Rather than what would otherwise be at the bottom of
the graph: a read and then the computation).

It is possible
to handle it all in Dask

without modification further up the

stack.

We have demonstrated that in a fork

of Dask, but
we wont try to push our

patches ups
tream until there are

some active storage servers

deployed for real.

https://ncas-cms.github.io/cf-python/
https://github.com/valeriupredoi/PyActiveStorage

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Summary

Active Storage

We’ve built and tested code to
push filters, decompression, and
reductions into storage.

S3 implementation is feature
complete. Performance testing
planned for early next year.
POSIX implementation in DDN
Infinia shows promise.

Existing version is domain
specific (utilising CF-Python) but
methodology to make discipline
independent (via minor
modification to Dask) exists.

Whither Lustre?

How do we get chunks aligned
on OSS?

Do we need striping if we are
putting chunks on different OSS?

How do we add computational
facilities to Lustre?

Control?: Overload ioctl?
Something else?
Software: Need
implementation of reductions,
filters and decompression.
Hardware: Buffer size,
caching, configuration?

Active
Storage

Intro

Science
Context

Active
Storage

Concept

Chunking

Workflow

Detail

Implementation

Requirements

Summary

Summary

Active Storage

We’ve built and tested code to
push filters, decompression, and
reductions into storage.

S3 implementation is feature
complete. Performance testing
planned for early next year.
POSIX implementation in DDN
Infinia shows promise.

Existing version is domain
specific (utilising CF-Python) but
methodology to make discipline
independent (via minor
modification to Dask) exists.

Whither Lustre?

How do we get chunks aligned
on OSS?

Do we need striping if we are
putting chunks on different OSS?

How do we add computational
facilities to Lustre?

Control?: Overload ioctl?
Something else?
Software: Need
implementation of reductions,
filters and decompression.
Hardware: Buffer size,
caching, configuration?

	Intro
	Science Context
	Active Storage
	Concept
	Chunking
	Workflow
	Detail
	Implementation
	Requirements

	Summary

